Advertisement

Causality of Spike Trains Based on Entropy

Chapter
  • 1.5k Downloads

Abstract

Uncovering the causal relationship between spike train recordings from different neurons is a key issue for understanding the neural coding. This chapter presents a method, called permutation conditional mutual information (PCMI), for characterizing the causality between a pair of neurons. The performance of this method is demonstrated with the spike trains generated by the Izhikevich neuronal model, including estimation of the directionality index and detection of the temporal dynamics of the causal link. Simulations show that the PCMI method is superior to the transfer entropy (TE) and causal entropy (CE) methods at identifying the coupling direction between the spike trains. The advantages of PCMI are twofold: it is able to estimate the directionality index under the weak coupling and against the missing and extra spikes.

Keywords

Spike train Causality Permutation Conditional mutual information 

References

  1. Asai Y, Villa AE. Reconstruction of underlying nonlinear deterministic dynamics embedded in noisy spike trains. J Biol Phys. 2008;34:325–40.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci. 2006;7:358–66.CrossRefPubMedGoogle Scholar
  3. Bahraminasab A, Ghasemi F, Stefanovska A, McClintock P, Kantz H. Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys Rev Lett. 2008;100:84101.CrossRefGoogle Scholar
  4. Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002;88:174102.CrossRefPubMedGoogle Scholar
  5. Brown E, Kass R, Mitra P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci. 2004;7:456–61.CrossRefPubMedGoogle Scholar
  6. Cessac B, Paugam-Moisy H, Viéville T. Overview of facts and issues about neural coding by spikes. J Physiol Paris. 2010;104:5–18.CrossRefPubMedGoogle Scholar
  7. Chen Y, Rangarajan G, Feng J, Ding M. Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A. 2004;324:26–35.CrossRefGoogle Scholar
  8. deCharms RC, Zador A. Neural representation and the cortical code. Annu Rev Neurosci. 2000;23:613–47.CrossRefPubMedGoogle Scholar
  9. Dickey AS, Suminski A, Amit Y, Hatsopoulos NG. Single-unit stability using chronically implanted multielectrode arrays. J Neurophysiol. 2009;102:1331–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ding M, Chen Y, Bressler S. Granger causality: basic theory and application to neuroscience 2006; Arxiv preprint q-bio/0608035.Google Scholar
  11. Dzakpasu R, Zochowski M. Discriminating differing types of synchrony in neural systems. Physica D Nonlinear Phenomena. 2005;208:115–22.CrossRefGoogle Scholar
  12. Fellous JM, Tiesinga PH, Thomas PJ, Sejnowski TJ. Discovering spike patterns in neuronal responses. J Neurosci. 2004;24:2989–3001.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fries P, Neuenschwander S, Engel AK, Goebel R, Singer W. Rapid feature selective neuronal synchronization through correlated latency shifting. Nat Neurosci. 2001;4:194–200.CrossRefPubMedGoogle Scholar
  14. Gourévitch B, Eggermont J. Evaluating information transfer between auditory cortical neurons. JNeurophysiol. 2007;97:2533–43.Google Scholar
  15. Haas JS, White JA. Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. JNeurophysiol. 2002;88:2422–9.Google Scholar
  16. Havlicek M, Jan J, Brazdil M, Calhoun VD. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage. 2010;53:65–77.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hlavkov Schindler K, Palus M, Vejmelka M, Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys Rep. 2007;441:1–46.CrossRefGoogle Scholar
  18. Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14:1569–72.CrossRefGoogle Scholar
  19. Kamiński M, Ding M, Truccolo W, Bressler S. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern. 2001;85:145–57.CrossRefPubMedGoogle Scholar
  20. Kandagor V, Cela CJ, Sanders CA, Greenbaum E, Lazzi G, Humayun MS, Zhou DM, Castro R, Gaikwad S, Little J. Spatial characterization of electric potentials generated by pulsed microelectrode arrays. Conf Proc IEEE Eng Med Biol Soc. 2010;1:6243–6.Google Scholar
  21. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A. Measuring spike train synchrony. J Neurosci Methods. 2007;165:151–61.CrossRefPubMedGoogle Scholar
  22. Krumin M, Shoham S. Multivariate autoregressive modeling and granger causality analysis of multiple spike trains. Comput Intell Neurosci. 2010;752428.Google Scholar
  23. Li X, Ouyang G. Estimating coupling direction between neuronal populations with permutation conditional mutual information. Neuroimage. 2010;52:497–507.CrossRefPubMedGoogle Scholar
  24. Li X, Ouyang G, Richards DA. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 2007;77:70–4.CrossRefPubMedGoogle Scholar
  25. Li X, Cui S, Voss LJ. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology. 2008;109:448–56.CrossRefPubMedGoogle Scholar
  26. Li D, Li X, Liang Z, Voss LJ, Sleigh JW. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng. 2010;7:046010.CrossRefPubMedGoogle Scholar
  27. Narayan R, Grana G, Sen K. Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol. 2006;96:252–8.CrossRefPubMedGoogle Scholar
  28. Nedungadi AG, Rangarajan G, Jain N, Ding M. Analyzing multiple spike trains with nonparametric granger causality. J Comput Neurosci. 2009;27:55–64.CrossRefPubMedGoogle Scholar
  29. Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR. Neural coding of natural stimuli: information at sub-millisecond resolution. PLoS Comput Biol. 2008;4:e1000025.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD. Sparse coding and high-order correlations in fine-scale cortical networks. Nature. 2010;466:617–21.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Olofsen E, Sleigh JW, Dahan A. Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth. 2008;101:810–21.CrossRefPubMedGoogle Scholar
  32. Palu M, Stefanovska A. Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys Rev E. 2003;67:55201.CrossRefGoogle Scholar
  33. Palu M, Komárek V, Hrncír Z, Stěrbová K. Synchronization as adjustment of information rates: detection from bivariate time series. Phys Rev E. 2001;63:46211.CrossRefGoogle Scholar
  34. Pouget A, Dayan P, Zemel R. Information processing with population codes. Nat Rev Neurosci. 2000;1:125–32.CrossRefPubMedGoogle Scholar
  35. Quian Quiroga R, Kreuz T, Grassberger P. Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:041904.CrossRefPubMedGoogle Scholar
  36. Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R. Identification of coupling direction: application to cardiorespiratory interaction. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65:041909.CrossRefPubMedGoogle Scholar
  37. Salinas E, Sejnowski T. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2001;2:539–50.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Salvador R, Anguera M, Gomar JJ, Bullmore ET, Pomarol-Clotet E. Conditional mutual information maps as descriptors of net connectivity levels in the brain. Front Neuroinform. 2010;4:115.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sasaki T, Kimura R, Tsukamoto M, Matsuki N, Ikegaya Y. Integrative spike dynamics of rat CA1 neurons: a multineuronal imaging study. J Physiol. 2006;574:195–208.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schnupp JW, Hall TM, Kokelaar RF, Ahmed B. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci. 2006;26:4785–95.CrossRefPubMedGoogle Scholar
  41. Schreiber T. Measuring information transfer. Phys Rev Lett. 2000;85:461–4.CrossRefPubMedGoogle Scholar
  42. Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ. A new correlation-based measure of spike timing reliability. Neurocomputing. 2003;52–54:925–31.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Seth AK. Causal connectivity of evolved neural networks during behavior. Network. 2005;16:35–54.CrossRefGoogle Scholar
  44. Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods. 2010;186:262–73.CrossRefPubMedGoogle Scholar
  45. Shelhamer M. Nonlinear dynamics in physiology: a state-space approach. Singapore: World Scientific Pub Co Inc.; 2007.Google Scholar
  46. Shlens J, Kennel MB, Abarbanel HD, Chichilnisky EJ. Estimating information rates with confidence intervals in neural spike trains. Neural Comput. 2007;19:1683–719.CrossRefPubMedGoogle Scholar
  47. Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W. Entropy and information in neural spike trains. Phys Rev Lett. 1998;80:197–200.CrossRefGoogle Scholar
  48. Swadlow HA, Rosene DL, Waxman SG. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey. Exp Brain Res. 1978;33:455–67.CrossRefPubMedGoogle Scholar
  49. Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y. Watching neuronal circuit dynamics through functional multineuron calcium imaging (fMCI). Neurosci Res. 2007;58:219–25.CrossRefPubMedGoogle Scholar
  50. Thomas J, Cover T. Elements of information theory. New York: Wiley-Interscience; 1991.Google Scholar
  51. van Rossum MC. A novel spike distance. Neural Comput. 2001;13:751–63.CrossRefPubMedGoogle Scholar
  52. Vejmelka M, Palus M. Inferring the directionality of coupling with conditional mutual information. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77:026214.CrossRefPubMedGoogle Scholar
  53. Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy- a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30:45–67.CrossRefPubMedGoogle Scholar
  54. Victor JD, Purpura KP. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol. 1996;76:1310–26.PubMedGoogle Scholar
  55. Victor J, Purpura K. Metric-space analysis of spike trains: theory, algorithms and application. Netw Comput Neural Syst. 1997;8:127–64.CrossRefGoogle Scholar
  56. Waddell J, Dzakpasu R, Booth V, Riley B, Reasor J, Poe G, Zochowski M. Causal entropies--A measure for determining changes in the temporal organization of neural systems. J Neurosci Methods. 2007;162:320–32.CrossRefPubMedGoogle Scholar
  57. Wang L, Narayan R, Grana G, Shamir M, Sen K. Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci. 2007;27:582–9.CrossRefPubMedGoogle Scholar
  58. Zochowski M, Cohen LB, Fuhrmann G, Kleinfeld D. Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J Neurosci. 2000;20:8485–92.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.School of Information Science and EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
  3. 3.Center for Collaboration and Innovation in Brain and Learning SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations