Skip to main content

Causality of Spike Trains Based on Entropy

  • Chapter
  • First Online:
Book cover Signal Processing in Neuroscience

Abstract

Uncovering the causal relationship between spike train recordings from different neurons is a key issue for understanding the neural coding. This chapter presents a method, called permutation conditional mutual information (PCMI), for characterizing the causality between a pair of neurons. The performance of this method is demonstrated with the spike trains generated by the Izhikevich neuronal model, including estimation of the directionality index and detection of the temporal dynamics of the causal link. Simulations show that the PCMI method is superior to the transfer entropy (TE) and causal entropy (CE) methods at identifying the coupling direction between the spike trains. The advantages of PCMI are twofold: it is able to estimate the directionality index under the weak coupling and against the missing and extra spikes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asai Y, Villa AE. Reconstruction of underlying nonlinear deterministic dynamics embedded in noisy spike trains. J Biol Phys. 2008;34:325–40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci. 2006;7:358–66.

    Article  CAS  PubMed  Google Scholar 

  • Bahraminasab A, Ghasemi F, Stefanovska A, McClintock P, Kantz H. Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys Rev Lett. 2008;100:84101.

    Article  CAS  Google Scholar 

  • Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002;88:174102.

    Article  PubMed  Google Scholar 

  • Brown E, Kass R, Mitra P. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci. 2004;7:456–61.

    Article  CAS  PubMed  Google Scholar 

  • Cessac B, Paugam-Moisy H, Viéville T. Overview of facts and issues about neural coding by spikes. J Physiol Paris. 2010;104:5–18.

    Article  PubMed  Google Scholar 

  • Chen Y, Rangarajan G, Feng J, Ding M. Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A. 2004;324:26–35.

    Article  CAS  Google Scholar 

  • deCharms RC, Zador A. Neural representation and the cortical code. Annu Rev Neurosci. 2000;23:613–47.

    Article  CAS  PubMed  Google Scholar 

  • Dickey AS, Suminski A, Amit Y, Hatsopoulos NG. Single-unit stability using chronically implanted multielectrode arrays. J Neurophysiol. 2009;102:1331–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding M, Chen Y, Bressler S. Granger causality: basic theory and application to neuroscience 2006; Arxiv preprint q-bio/0608035.

    Google Scholar 

  • Dzakpasu R, Zochowski M. Discriminating differing types of synchrony in neural systems. Physica D Nonlinear Phenomena. 2005;208:115–22.

    Article  Google Scholar 

  • Fellous JM, Tiesinga PH, Thomas PJ, Sejnowski TJ. Discovering spike patterns in neuronal responses. J Neurosci. 2004;24:2989–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries P, Neuenschwander S, Engel AK, Goebel R, Singer W. Rapid feature selective neuronal synchronization through correlated latency shifting. Nat Neurosci. 2001;4:194–200.

    Article  CAS  PubMed  Google Scholar 

  • Gourévitch B, Eggermont J. Evaluating information transfer between auditory cortical neurons. JNeurophysiol. 2007;97:2533–43.

    Google Scholar 

  • Haas JS, White JA. Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. JNeurophysiol. 2002;88:2422–9.

    Google Scholar 

  • Havlicek M, Jan J, Brazdil M, Calhoun VD. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data. Neuroimage. 2010;53:65–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hlavkov Schindler K, Palus M, Vejmelka M, Bhattacharya J. Causality detection based on information-theoretic approaches in time series analysis. Phys Rep. 2007;441:1–46.

    Article  Google Scholar 

  • Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14:1569–72.

    Article  CAS  Google Scholar 

  • Kamiński M, Ding M, Truccolo W, Bressler S. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern. 2001;85:145–57.

    Article  PubMed  Google Scholar 

  • Kandagor V, Cela CJ, Sanders CA, Greenbaum E, Lazzi G, Humayun MS, Zhou DM, Castro R, Gaikwad S, Little J. Spatial characterization of electric potentials generated by pulsed microelectrode arrays. Conf Proc IEEE Eng Med Biol Soc. 2010;1:6243–6.

    Google Scholar 

  • Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A. Measuring spike train synchrony. J Neurosci Methods. 2007;165:151–61.

    Article  PubMed  Google Scholar 

  • Krumin M, Shoham S. Multivariate autoregressive modeling and granger causality analysis of multiple spike trains. Comput Intell Neurosci. 2010;752428.

    Google Scholar 

  • Li X, Ouyang G. Estimating coupling direction between neuronal populations with permutation conditional mutual information. Neuroimage. 2010;52:497–507.

    Article  PubMed  Google Scholar 

  • Li X, Ouyang G, Richards DA. Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 2007;77:70–4.

    Article  PubMed  Google Scholar 

  • Li X, Cui S, Voss LJ. Using permutation entropy to measure the electroencephalographic effects of sevoflurane. Anesthesiology. 2008;109:448–56.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Li X, Liang Z, Voss LJ, Sleigh JW. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng. 2010;7:046010.

    Article  PubMed  Google Scholar 

  • Narayan R, Grana G, Sen K. Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol. 2006;96:252–8.

    Article  PubMed  Google Scholar 

  • Nedungadi AG, Rangarajan G, Jain N, Ding M. Analyzing multiple spike trains with nonparametric granger causality. J Comput Neurosci. 2009;27:55–64.

    Article  PubMed  Google Scholar 

  • Nemenman I, Lewen GD, Bialek W, de Ruyter van Steveninck RR. Neural coding of natural stimuli: information at sub-millisecond resolution. PLoS Comput Biol. 2008;4:e1000025.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD. Sparse coding and high-order correlations in fine-scale cortical networks. Nature. 2010;466:617–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsen E, Sleigh JW, Dahan A. Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br J Anaesth. 2008;101:810–21.

    Article  CAS  PubMed  Google Scholar 

  • Palu M, Stefanovska A. Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys Rev E. 2003;67:55201.

    Article  Google Scholar 

  • Palu M, Komárek V, Hrncír Z, Stěrbová K. Synchronization as adjustment of information rates: detection from bivariate time series. Phys Rev E. 2001;63:46211.

    Article  Google Scholar 

  • Pouget A, Dayan P, Zemel R. Information processing with population codes. Nat Rev Neurosci. 2000;1:125–32.

    Article  CAS  PubMed  Google Scholar 

  • Quian Quiroga R, Kreuz T, Grassberger P. Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:041904.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum MG, Cimponeriu L, Bezerianos A, Patzak A, Mrowka R. Identification of coupling direction: application to cardiorespiratory interaction. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;65:041909.

    Article  PubMed  Google Scholar 

  • Salinas E, Sejnowski T. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci. 2001;2:539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador R, Anguera M, Gomar JJ, Bullmore ET, Pomarol-Clotet E. Conditional mutual information maps as descriptors of net connectivity levels in the brain. Front Neuroinform. 2010;4:115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Kimura R, Tsukamoto M, Matsuki N, Ikegaya Y. Integrative spike dynamics of rat CA1 neurons: a multineuronal imaging study. J Physiol. 2006;574:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnupp JW, Hall TM, Kokelaar RF, Ahmed B. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex. J Neurosci. 2006;26:4785–95.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber T. Measuring information transfer. Phys Rev Lett. 2000;85:461–4.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ. A new correlation-based measure of spike timing reliability. Neurocomputing. 2003;52–54:925–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seth AK. Causal connectivity of evolved neural networks during behavior. Network. 2005;16:35–54.

    Article  Google Scholar 

  • Seth AK. A MATLAB toolbox for Granger causal connectivity analysis. J Neurosci Methods. 2010;186:262–73.

    Article  PubMed  Google Scholar 

  • Shelhamer M. Nonlinear dynamics in physiology: a state-space approach. Singapore: World Scientific Pub Co Inc.; 2007.

    Google Scholar 

  • Shlens J, Kennel MB, Abarbanel HD, Chichilnisky EJ. Estimating information rates with confidence intervals in neural spike trains. Neural Comput. 2007;19:1683–719.

    Article  PubMed  Google Scholar 

  • Strong S, Koberle R, de Ruyter van Steveninck R, Bialek W. Entropy and information in neural spike trains. Phys Rev Lett. 1998;80:197–200.

    Article  CAS  Google Scholar 

  • Swadlow HA, Rosene DL, Waxman SG. Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey. Exp Brain Res. 1978;33:455–67.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Sasaki T, Usami A, Matsuki N, Ikegaya Y. Watching neuronal circuit dynamics through functional multineuron calcium imaging (fMCI). Neurosci Res. 2007;58:219–25.

    Article  CAS  PubMed  Google Scholar 

  • Thomas J, Cover T. Elements of information theory. New York: Wiley-Interscience; 1991.

    Google Scholar 

  • van Rossum MC. A novel spike distance. Neural Comput. 2001;13:751–63.

    Article  PubMed  Google Scholar 

  • Vejmelka M, Palus M. Inferring the directionality of coupling with conditional mutual information. Phys Rev E Stat Nonlin Soft Matter Phys. 2008;77:026214.

    Article  PubMed  Google Scholar 

  • Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy- a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30:45–67.

    Article  PubMed  Google Scholar 

  • Victor JD, Purpura KP. Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol. 1996;76:1310–26.

    CAS  PubMed  Google Scholar 

  • Victor J, Purpura K. Metric-space analysis of spike trains: theory, algorithms and application. Netw Comput Neural Syst. 1997;8:127–64.

    Article  Google Scholar 

  • Waddell J, Dzakpasu R, Booth V, Riley B, Reasor J, Poe G, Zochowski M. Causal entropies--A measure for determining changes in the temporal organization of neural systems. J Neurosci Methods. 2007;162:320–32.

    Article  PubMed  Google Scholar 

  • Wang L, Narayan R, Grana G, Shamir M, Sen K. Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci. 2007;27:582–9.

    Article  CAS  PubMed  Google Scholar 

  • Zochowski M, Cohen LB, Fuhrmann G, Kleinfeld D. Distributed and partially separate pools of neurons are correlated with two different components of the gill-withdrawal reflex in Aplysia. J Neurosci. 2000;20:8485–92.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui Li or Xiaoli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, Z., Li, X. (2016). Causality of Spike Trains Based on Entropy. In: Li, X. (eds) Signal Processing in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-1822-0_3

Download citation

Publish with us

Policies and ethics