Skip to main content

Brief History and Development of Electrophysiological Recording Techniques in Neuroscience

  • Chapter
  • First Online:
Signal Processing in Neuroscience
  • 2049 Accesses

Abstract

When we are sitting in a classroom and listening to an exciting lecture, our brains are not interpreting the patterns of amplitude and frequency of sound wave produced by the professor. Actually, our brains are interpreting the spikes from roughly 3000 auditory nerve fibers. When we are reading an interesting book and the characters and words in every page come to our brains, our brains are not interpreting the color or light intensity which falls into our retina. In fact, our brains are reading the pattern of neural spikes which are evoked by millions of excitatory drives from connected neurons within neural networks. This means the only information which our brain received from sensory organs is the sequences of spikes or spike trains. Therefore, understanding the exact relationship between neural spikes and sensory stimuli allows us to reveal how the neural activities represent the external world. However, the major challenge in cognitive and computational neuroscience has been to characterize the firing patterns of central neurons in response to sensory stimuli or to behavior of alert moving animals. The investigation of how this information is represented in the electrical activities of the neurons is mainly limited by our ability to record these activities from single neuron. The progress in electrophysiological recording techniques is intertwined with the history of experiments on the electrical activity of nerves. In this chapter, we will have a look at the history of bioelectrical investigation in cognitive neuroscience, and then we will discuss the commonly used electrophysiological recording techniques and their applications in neuroscience research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barlow HB. Summation and inhibition in the frog’s retina. J Physiol. 1953a;119:69–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barlow HB. Action potentials from the frog’s retina. J Physiol. 1953b;119:58–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basar E. EEG-brain dynamics: relation between EEG and brain evoked potentials. Amsterdam: Elsevier/North-Holland Biomedical Pr.; 1980.

    Google Scholar 

  • Bishop GH, O’ Leary JL. Factors determining the form of the potential record in the vicinity of the synapses of the dorsal nucleus of the lateral geniculate body. J Cell Comp. 1942;19, 16.

    Google Scholar 

  • Boulton AA. Neurophysiological techniques: applications to neural systems. Clifton: Humana Press; 1990.

    Book  Google Scholar 

  • Bremer F. L’activité électrique de l’écorce cérébrale. Actualités Scientifiques et Industrielles. 1938;658:44.

    Google Scholar 

  • Bremer F. Considérations sur l’origine et la nature des “ondes” cérébrales. Electroencephalogr Clin Neurophysiol. 1949;1:17.

    Google Scholar 

  • Bresadola M. Medicine and science in the life of Luigi Galvani (1737–1798). Brain Res Bull. 1998;46:367–80.

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40.

    Article  CAS  PubMed  Google Scholar 

  • Caton R. The electric currents of the brain. Br Med J. 1875;2.

    Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr Clin Neurophysiol. 1966a;20:1–18.

    Article  CAS  PubMed  Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol. 1966b;20:19–37.

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC. Interpretation of action potentials evoked in the cerebral cortex. Electroencephalogr Clin Neurophysiol. 1951;3:449–64.

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Maldonado PE, Wilson M, McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods. 1995;63:43–54.

    Article  CAS  PubMed  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–6. doi:10.1038/nature03721.

    Article  CAS  PubMed  Google Scholar 

  • Hasenstaub A, et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005;47:423–35. doi:10.1016/j.neuron.2005.06.016.

    Article  CAS  PubMed  Google Scholar 

  • Helmholtz HV. On the sensations of tone as a physiological basis for the theory of music (trans: Ellis AJ). 2nd ed. London: Longmans, Green, and Co.; 1885. p. 44. Retrieved 2010-10-12

    Google Scholar 

  • Henze DA, et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol. 2000;84:390–400.

    CAS  PubMed  Google Scholar 

  • Hille B. Ion channels of excitable membranes. Sunderland: Sinauer Associates; 2001.

    Google Scholar 

  • Hodgkin A. Edgar Douglas Adrian, Baron Adrian of Cambridge, 30 November 1889–4 August 1977. Biographical Mem Fellows Roy Soc. Roy Soc (Great Britain). 1979;25:1–73.

    Google Scholar 

  • Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel D, Wiesel TN. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Ser B Biol Sci. 1977;198:1–59.

    Article  CAS  Google Scholar 

  • Kamondi A, Acsady L, Wang XJ, Buzsaki G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus. 1998;8:244–61. doi:10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  • Katzner S, et al. Local origin of field potentials in visual cortex. Neuron. 2009;61:35–41. doi:10.1016/j.neuron.2008.11.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee MR, Offenloch K, Tigges J. Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. New York: Science; 1965. 147:519–21.

    Google Scholar 

  • Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002;416:90–4. doi:10.1038/416090a.

    Article  CAS  PubMed  Google Scholar 

  • Lorente de No R. Action potentials of the motorneurones of the hypoglossus nucleus. J Cell Comp Physiol. 1947;81.

    Google Scholar 

  • Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci. 2009;12:70–6. doi:10.1038/nn.2232.

    Article  CAS  PubMed  Google Scholar 

  • Norrsell U, Finger S, Lajonchere C. Cutaneous sensory spots and the “law of specific nerve energies”: history and development of ideas. Brain Res Bull. 1999;48:457–65.

    Article  CAS  PubMed  Google Scholar 

  • O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109.

    Article  PubMed  Google Scholar 

  • O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res. 1978;31:573–90.

    PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5.

    Article  PubMed  Google Scholar 

  • Sakmann B, Neher E, editors. Single-channel recording. New York: Springer; 1995.

    Google Scholar 

  • Steriade M. Alertness, quiet sleep, dreaming, in cerebral cortex. New York: Plenum Press; 1991.

    Google Scholar 

  • Tanila H, Sipila P, Shapiro M, Eichenbaum H. Brain aging: impaired coding of novel environmental cues. J Neurosci. 1997;17:5167–74.

    CAS  PubMed  Google Scholar 

  • Van Dijck G, Van Hulle MM. Review of machine learning and signal processing techniques for automated electrode selection in high-density microelectrode arrays. Biomedizinische Technik Biomed Eng. 2014;59:323–33. doi:10.1515/bmt-2013-0037.

    Google Scholar 

  • Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90:1195–268. doi:10.1152/physrev.00035.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wennberg R, Valiante T, Cheyne D. EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol. 2011;122:1295–313. doi:10.1016/j.clinph.2010.11.019.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Huang, Z. (2016). Brief History and Development of Electrophysiological Recording Techniques in Neuroscience. In: Li, X. (eds) Signal Processing in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-1822-0_1

Download citation

Publish with us

Policies and ethics