Brief History and Development of Electrophysiological Recording Techniques in Neuroscience



When we are sitting in a classroom and listening to an exciting lecture, our brains are not interpreting the patterns of amplitude and frequency of sound wave produced by the professor. Actually, our brains are interpreting the spikes from roughly 3000 auditory nerve fibers. When we are reading an interesting book and the characters and words in every page come to our brains, our brains are not interpreting the color or light intensity which falls into our retina. In fact, our brains are reading the pattern of neural spikes which are evoked by millions of excitatory drives from connected neurons within neural networks. This means the only information which our brain received from sensory organs is the sequences of spikes or spike trains. Therefore, understanding the exact relationship between neural spikes and sensory stimuli allows us to reveal how the neural activities represent the external world. However, the major challenge in cognitive and computational neuroscience has been to characterize the firing patterns of central neurons in response to sensory stimuli or to behavior of alert moving animals. The investigation of how this information is represented in the electrical activities of the neurons is mainly limited by our ability to record these activities from single neuron. The progress in electrophysiological recording techniques is intertwined with the history of experiments on the electrical activity of nerves. In this chapter, we will have a look at the history of bioelectrical investigation in cognitive neuroscience, and then we will discuss the commonly used electrophysiological recording techniques and their applications in neuroscience research.


Spike train Local field potentials EEG Brain activity Recordings 


  1. Barlow HB. Summation and inhibition in the frog’s retina. J Physiol. 1953a;119:69–88.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barlow HB. Action potentials from the frog’s retina. J Physiol. 1953b;119:58–68.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Basar E. EEG-brain dynamics: relation between EEG and brain evoked potentials. Amsterdam: Elsevier/North-Holland Biomedical Pr.; 1980.Google Scholar
  4. Bishop GH, O’ Leary JL. Factors determining the form of the potential record in the vicinity of the synapses of the dorsal nucleus of the lateral geniculate body. J Cell Comp. 1942;19, 16.Google Scholar
  5. Boulton AA. Neurophysiological techniques: applications to neural systems. Clifton: Humana Press; 1990.CrossRefGoogle Scholar
  6. Bremer F. L’activité électrique de l’écorce cérébrale. Actualités Scientifiques et Industrielles. 1938;658:44.Google Scholar
  7. Bremer F. Considérations sur l’origine et la nature des “ondes” cérébrales. Electroencephalogr Clin Neurophysiol. 1949;1:17.Google Scholar
  8. Bresadola M. Medicine and science in the life of Luigi Galvani (1737–1798). Brain Res Bull. 1998;46:367–80.CrossRefPubMedGoogle Scholar
  9. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–40.CrossRefPubMedGoogle Scholar
  10. Caton R. The electric currents of the brain. Br Med J. 1875;2.Google Scholar
  11. Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and erpicortical stimulation. Electroencephalogr Clin Neurophysiol. 1966a;20:1–18.CrossRefPubMedGoogle Scholar
  12. Creutzfeldt OD, Watanabe S, Lux HD. Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol. 1966b;20:19–37.CrossRefPubMedGoogle Scholar
  13. Eccles JC. Interpretation of action potentials evoked in the cerebral cortex. Electroencephalogr Clin Neurophysiol. 1951;3:449–64.CrossRefPubMedGoogle Scholar
  14. Gray CM, Maldonado PE, Wilson M, McNaughton B. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods. 1995;63:43–54.CrossRefPubMedGoogle Scholar
  15. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–6. doi: 10.1038/nature03721.CrossRefPubMedGoogle Scholar
  16. Hasenstaub A, et al. Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron. 2005;47:423–35. doi: 10.1016/j.neuron.2005.06.016.CrossRefPubMedGoogle Scholar
  17. Helmholtz HV. On the sensations of tone as a physiological basis for the theory of music (trans: Ellis AJ). 2nd ed. London: Longmans, Green, and Co.; 1885. p. 44. Retrieved 2010-10-12Google Scholar
  18. Henze DA, et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol. 2000;84:390–400.PubMedGoogle Scholar
  19. Hille B. Ion channels of excitable membranes. Sunderland: Sinauer Associates; 2001.Google Scholar
  20. Hodgkin A. Edgar Douglas Adrian, Baron Adrian of Cambridge, 30 November 1889–4 August 1977. Biographical Mem Fellows Roy Soc. Roy Soc (Great Britain). 1979;25:1–73.Google Scholar
  21. Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962;160:106–54.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hubel D, Wiesel TN. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond Ser B Biol Sci. 1977;198:1–59.CrossRefGoogle Scholar
  23. Kamondi A, Acsady L, Wang XJ, Buzsaki G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus. 1998;8:244–61. doi: 10.1002/(SICI)1098-1063(1998)8:3<244::AID-HIPO7>3.0.CO;2-J.CrossRefPubMedGoogle Scholar
  24. Katzner S, et al. Local origin of field potentials in visual cortex. Neuron. 2009;61:35–41. doi: 10.1016/j.neuron.2008.11.016.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Klee MR, Offenloch K, Tigges J. Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. New York: Science; 1965. 147:519–21.Google Scholar
  26. Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002;416:90–4. doi: 10.1038/416090a.CrossRefPubMedGoogle Scholar
  27. Lorente de No R. Action potentials of the motorneurones of the hypoglossus nucleus. J Cell Comp Physiol. 1947;81.Google Scholar
  28. Nauhaus I, Busse L, Carandini M, Ringach DL. Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci. 2009;12:70–6. doi: 10.1038/nn.2232.CrossRefPubMedGoogle Scholar
  29. Norrsell U, Finger S, Lajonchere C. Cutaneous sensory spots and the “law of specific nerve energies”: history and development of ideas. Brain Res Bull. 1999;48:457–65.CrossRefPubMedGoogle Scholar
  30. O’Keefe J. Place units in the hippocampus of the freely moving rat. Exp Neurol. 1976;51:78–109.CrossRefPubMedGoogle Scholar
  31. O’Keefe J, Conway DH. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp Brain Res. 1978;31:573–90.PubMedGoogle Scholar
  32. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–5.CrossRefPubMedGoogle Scholar
  33. Sakmann B, Neher E, editors. Single-channel recording. New York: Springer; 1995.Google Scholar
  34. Steriade M. Alertness, quiet sleep, dreaming, in cerebral cortex. New York: Plenum Press; 1991.Google Scholar
  35. Tanila H, Sipila P, Shapiro M, Eichenbaum H. Brain aging: impaired coding of novel environmental cues. J Neurosci. 1997;17:5167–74.PubMedGoogle Scholar
  36. Van Dijck G, Van Hulle MM. Review of machine learning and signal processing techniques for automated electrode selection in high-density microelectrode arrays. Biomedizinische Technik Biomed Eng. 2014;59:323–33. doi: 10.1515/bmt-2013-0037.Google Scholar
  37. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90:1195–268. doi: 10.1152/physrev.00035.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Wennberg R, Valiante T, Cheyne D. EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol. 2011;122:1295–313. doi: 10.1016/j.clinph.2010.11.019.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina

Personalised recommendations