Skip to main content

Cross-Frequency Coupling in Neural Oscillations

  • Chapter
  • First Online:
Signal Processing in Neuroscience
  • 1793 Accesses

Abstract

Brain oscillations play important roles in the product of normal brain function, and not only one but several rhythms are involved in it. How these rhythmic activities interact has been a hot research topic in electrophysiological studies. A series of studies have found that interaction between different rhythms is associated with cognitive processes. This chapter will present the related information to introduce the cross-frequency methods.

An application of cross-frequency coupling was given to explore the speech perception in children. The results provided neuroanatomical evidence for theories of speech perception allowing for top-down feedback connections and also provided insight into children’s speech perception development. It indicated that the interaction of different oscillatory activities could be exploited to investigate the bottom-up and top-down mechanisms in speech perception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnal LH, Wyart V, Giraud AL. Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nat Neurosci. 2011;14(6):797–801.

    Article  CAS  PubMed  Google Scholar 

  • Bitan T, Burman DD, Lu D, Cone NE, Gitelman DR, Mesulam MM, Booth JR. Weaker top-down modulation from the left inferior frontal gyrus in children. NeuroImage. 2006;33(3):991–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bitan T, Cheon J, Lu D, Burman DD, Booth JR. Developmental increase in top-down and bottom-up processing in a phonological task: an effective connectivity, fMRI study. J Cogn Neurosci. 2009;21(6):1135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    Article  CAS  PubMed  Google Scholar 

  • Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Khalid K, Lee R, Brennan C, Yang Y, Li K, Bolger DJ, Booth JR. Development of brain networks involved in spoken word processing of Mandarin Chinese. Neuroimage. 2011;57(3):750–9.

    Article  PubMed  Google Scholar 

  • Cohen MX. Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods. 2008;168(2):494–9.

    Article  PubMed  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser M-B, Moser EI. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009;462(7271):353–7.

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.

    Article  PubMed  Google Scholar 

  • Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T, Birbaumer N. Alpha phase reset contributes to the generation of ERPs. Cereb Cortex. 2007;17(1):1–8.

    Article  PubMed  Google Scholar 

  • Jelic V, Kowalski J. Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci. 2009;40(2):129–42.

    Article  PubMed  Google Scholar 

  • Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.

    Article  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev. 2007;31(7):1003–16.

    Article  PubMed  Google Scholar 

  • Lisman JE, Idiart MA. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–5.

    Article  CAS  PubMed  Google Scholar 

  • Mc LT. Hippocampal formation of brain as detector-coder of temporal patterns of information. Perspect Biol Med. 1959;2(4):443–52.

    Article  Google Scholar 

  • Moran LV, Hong LE. High vs low frequency neural oscillations in schizophrenia. Schizophr Bull. 2011;37(4):659–63.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger CE, Fernandez G. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus. 2005;15(7):890–900.

    Article  PubMed  Google Scholar 

  • O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.

    Article  PubMed  Google Scholar 

  • Penny WD, Duzel E, Miller KJ, Ojemann JG. Testing for nested oscillation. J Neurosci Methods. 2008;174(1):50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tort AB, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol. 2010;104(2):1195–210.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.

    Article  Google Scholar 

  • Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90(3):1195–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Gao D, Li D, Desroches AS, Liu L, Li X. Theta-gamma coupling reflects the interaction of bottom-up and top-down processes in speech perception in children. Neuroimage. 2014;102(Pt 2):637–45.

    Article  PubMed  Google Scholar 

  • White JA, Banks MI, Pearce RA, Kopell NJ. Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A. 2000;97(14):8128–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Fen L, Daniel JS. EEG phase reset due to auditory attention: an inverse time-scale approach. Physiol Meas. 2009;30(8):821.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, J., Li, X. (2016). Cross-Frequency Coupling in Neural Oscillations. In: Li, X. (eds) Signal Processing in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-1822-0_13

Download citation

Publish with us

Policies and ethics