Cross-Frequency Coupling in Neural Oscillations



Brain oscillations play important roles in the product of normal brain function, and not only one but several rhythms are involved in it. How these rhythmic activities interact has been a hot research topic in electrophysiological studies. A series of studies have found that interaction between different rhythms is associated with cognitive processes. This chapter will present the related information to introduce the cross-frequency methods.

An application of cross-frequency coupling was given to explore the speech perception in children. The results provided neuroanatomical evidence for theories of speech perception allowing for top-down feedback connections and also provided insight into children’s speech perception development. It indicated that the interaction of different oscillatory activities could be exploited to investigate the bottom-up and top-down mechanisms in speech perception.


Electrophysiology Rhythm Modulation Phase Amplitude Cross-frequency coupling 


  1. Arnal LH, Wyart V, Giraud AL. Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nat Neurosci. 2011;14(6):797–801.CrossRefPubMedGoogle Scholar
  2. Bitan T, Burman DD, Lu D, Cone NE, Gitelman DR, Mesulam MM, Booth JR. Weaker top-down modulation from the left inferior frontal gyrus in children. NeuroImage. 2006;33(3):991–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bitan T, Cheon J, Lu D, Burman DD, Booth JR. Developmental increase in top-down and bottom-up processing in a phonological task: an effective connectivity, fMRI study. J Cogn Neurosci. 2009;21(6):1135–45.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(5679):1926–9.CrossRefPubMedGoogle Scholar
  5. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao F, Khalid K, Lee R, Brennan C, Yang Y, Li K, Bolger DJ, Booth JR. Development of brain networks involved in spoken word processing of Mandarin Chinese. Neuroimage. 2011;57(3):750–9.CrossRefPubMedGoogle Scholar
  7. Cohen MX. Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods. 2008;168(2):494–9.CrossRefPubMedGoogle Scholar
  8. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser M-B, Moser EI. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009;462(7271):353–7.CrossRefPubMedGoogle Scholar
  9. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.CrossRefPubMedGoogle Scholar
  10. Hanslmayr S, Klimesch W, Sauseng P, Gruber W, Doppelmayr M, Freunberger R, Pecherstorfer T, Birbaumer N. Alpha phase reset contributes to the generation of ERPs. Cereb Cortex. 2007;17(1):1–8.CrossRefPubMedGoogle Scholar
  11. Jelic V, Kowalski J. Evidence-based evaluation of diagnostic accuracy of resting EEG in dementia and mild cognitive impairment. Clin EEG Neurosci. 2009;40(2):129–42.CrossRefPubMedGoogle Scholar
  12. Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11(7):267–9.CrossRefPubMedGoogle Scholar
  13. Klimesch W, Sauseng P, Hanslmayr S, Gruber W, Freunberger R. Event-related phase reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev. 2007;31(7):1003–16.CrossRefPubMedGoogle Scholar
  14. Lisman JE, Idiart MA. Storage of 7 +/− 2 short-term memories in oscillatory subcycles. Science. 1995;267(5203):1512–5.CrossRefPubMedGoogle Scholar
  15. Mc LT. Hippocampal formation of brain as detector-coder of temporal patterns of information. Perspect Biol Med. 1959;2(4):443–52.CrossRefGoogle Scholar
  16. Moran LV, Hong LE. High vs low frequency neural oscillations in schizophrenia. Schizophr Bull. 2011;37(4):659–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mormann F, Fell J, Axmacher N, Weber B, Lehnertz K, Elger CE, Fernandez G. Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus. 2005;15(7):890–900.CrossRefPubMedGoogle Scholar
  18. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34(1):171–5.CrossRefPubMedGoogle Scholar
  19. Penny WD, Duzel E, Miller KJ, Ojemann JG. Testing for nested oscillation. J Neurosci Methods. 2008;174(1):50–61.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Tort AB, Komorowski R, Eichenbaum H, Kopell N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol. 2010;104(2):1195–210.CrossRefPubMedPubMedCentralGoogle Scholar
  21. von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38(3):301–13.CrossRefGoogle Scholar
  22. Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90(3):1195–268.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Wang J, Gao D, Li D, Desroches AS, Liu L, Li X. Theta-gamma coupling reflects the interaction of bottom-up and top-down processes in speech perception in children. Neuroimage. 2014;102(Pt 2):637–45.CrossRefPubMedGoogle Scholar
  24. White JA, Banks MI, Pearce RA, Kopell NJ. Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A. 2000;97(14):8128–33.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Yin Fen L, Daniel JS. EEG phase reset due to auditory attention: an inverse time-scale approach. Physiol Meas. 2009;30(8):821.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders ProgramDuke-NUS Medical SchoolSingaporeSingapore
  2. 2.State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
  3. 3.Center for Collaboration and Innovation in Brain and Learning SciencesBeijing Normal UniversityBeijingChina

Personalised recommendations