Skip to main content

Multivariate EEG Synchronization Strength Measures

  • Chapter
  • First Online:
Signal Processing in Neuroscience

Abstract

EEG synchronization is considered to be the important performance of the brain to inform, communicate, interact, and coordinate between various regions. There exist lots of bivariate methods to quantify the EEG synchronization between two EEG signals. However, multivariate data contain more information than those inferable from multiple bivariate examinations. Multivariate synchronization analysis aiming at the global information has been paid much more attention recently. It is a useful technique for studying the interactions in a group of multivariate channels for the understanding of overall dynamical properties in the brain. In this chapter, the multivariate synchronization methods including phase synchronization cluster analysis, S-estimator, correlation matrix analysis, omega complexity, partial directed coherence, directed transfer function, and complex network analysis and their applications in studying the relationship among neural signals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization of chaos: the auxiliary system approach. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;53(5):4528–35.

    CAS  PubMed  Google Scholar 

  • Albo Z, Di Prisco GV, Chen Y, et al. Is partial coherence a viable technique for identifying generators of neural oscillations? Biol Cybern. 2004;90(5):318–26.

    Article  PubMed  Google Scholar 

  • Allefeld C, Kurths J. An approach to multivariate phase synchronization analysis and its application to event-related potentials: synchronization cluster analysis. Int J Bifurcation Chaos. 2004;14:417–26.

    Article  Google Scholar 

  • Allefeld C, Müller M, Kurths J. Eigenvalue decomposition as a generalized synchronization cluster analysis. Int J Bifurcation Chaos. 2007;17(10):3493–7.

    Article  Google Scholar 

  • Arnhold J, Lehnertz K, Grassberger P, et al. A robust method for detecting interdependences: application to intracranially recorded EEG. Physica D Nonlinear Phenomena. 1999;134(4):419–30.

    Article  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D, et al. Causality estimates among brain cortical areas by partial directed coherence: simulations and application to real data. Int J Bioelectromagnetism. 2005;7(1):1–4.

    Google Scholar 

  • Babiloni C, Ferri R, Binetti G, et al. Directionality of EEG synchronization in Alzheimer’s disease subjects. Neurobiol Aging. 2009;30(1):93–102.

    Article  PubMed  Google Scholar 

  • Baccalá LA, Sameshima K. Overcoming the limitations of correlation analysis for many simultaneously processed neural structures. Prog Brain Res. 2001a;130(1):33–47.

    Article  PubMed  Google Scholar 

  • Baccalá LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biol Cybern. 2001b;84(6):463–74.

    Article  PubMed  Google Scholar 

  • Bendat JS, Piersol AG. Random data analysis and measurement procedures. Mea Sci Technol. 2000;11(12):1825–6.

    Google Scholar 

  • Bhattacharya J, Petsche H, Pereda E. Long-range synchrony in the gamma band: role in music perception. J Neurosci Off J Soc Neurosci. 2001;21(16):6329–37.

    CAS  Google Scholar 

  • Bialonski S, Lehnertz K. Identifying phase synchronization clusters in spatially extended dynamical systems. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74(5 Pt 1):051909.

    Article  PubMed  CAS  Google Scholar 

  • Boccaletti S, Kurths J, Osipov G, et al. The synchronization of chaotic systems. Phys Rep. 2002;366:1–101.

    Article  CAS  Google Scholar 

  • Breakspear M, Terry JR. Topographic organization of nonlinear interdependence in multichannel human EEG. Neuroimage. 2002;16(3 Pt 1):822–35.

    Article  CAS  PubMed  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, et al. Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci U S A. 2004;101(26):9849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruns A. Fourier-, Hilbert- and wavelet-based signal analysis: are they really different approaches? J Neurosci Methods. 2004;137:321–32.

    Article  PubMed  Google Scholar 

  • Büchel C, Friston K. Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw. 2000;13(8):871–82.

    Article  PubMed  Google Scholar 

  • Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7(5):446–51.

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304(1):1926–9.

    Article  PubMed  CAS  Google Scholar 

  • Carmeli C, Knyazeva MG, Innocenti GM, et al. Assessment of EEG synchronization based on state-space analysis. Neuroimage. 2005;25(2):339–54.

    Article  PubMed  Google Scholar 

  • Clifford Carte G. Coherence and time delay estimation. Proc IEEE. 1987;75(2):236–55.

    Article  Google Scholar 

  • Cohen MI, Yu Q, Huang WX. Preferential correlations of a medullary neuron’s activity to different sympathetic outflows as revealed by partial coherence analysis. J Neurophysiol. 1995;74(1):474–8.

    CAS  PubMed  Google Scholar 

  • Cui D, Liu XZ, Wan Y, et al. Estimation of genuine and random synchronization in multivariate neural series. Neural Netw. 2010;23:698–704.

    Article  PubMed  Google Scholar 

  • Cui D, Liu J, Bian Zh J, et al. Cortical source multivariate EEG synchronization analysis on amnestic mild cognitive impairment in type 2 diabetes. Scientific World Journal. 2014;523216:1–9.

    Google Scholar 

  • Darbellay GA, Vajda I. Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans Inf Theory. 1999;45(4):1315–21.

    Article  Google Scholar 

  • David O, Cosmelli D, Lachaux JP, et al. A theoretical and experimental introduction to the non-invasive study of large-scale neural phase synchronization in human beings. Int J Comput Cogn. 2003;1(4):53–77.

    Google Scholar 

  • Ding M, Bressler SL, Yang W, et al. Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment. Biol Cybern. 2000;83:35–45.

    Article  CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001;2(10):704–16.

    Article  CAS  PubMed  Google Scholar 

  • Fanselow EE, Sameshima K, Baccala LA, et al. Thalamic bursting in rats during different awake behavioral states. Proc Natl Acad Sci. 2001;98(26):15330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferri R, Rundo F, Bruni O, et al. Small-world network organization of functional connectivity of EEG slow-wave activity during sleep. Clin Neurophysiol Off J Int Fed ClinNeurophysiol. 2007;118(2):449–56.

    Article  Google Scholar 

  • Fine AS, Nicholls DP, Mogul DJ. Assessing instantaneous synchrony of nonlinear nonstationary oscillators in the brain. J Neurosci Methods. 2010;186(1):42–51.

    Article  PubMed  Google Scholar 

  • Friston KJ. The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans Royal Soc Lond. 2000;355(1394):215–36.

    Article  CAS  Google Scholar 

  • Gandrzejak R, Kraskov A, Stögbauer H, et al. Bivariate surrogate techniques: necessity, strengths, and caveats. Phys Rev E Stat Nonlin Soft Matt Phys. 2003;68:1855–62.

    Google Scholar 

  • Gersch W, Goddard GV. Epileptic focus location: spectral analysis method. Science. 1970;169(3946):701–2.

    Article  CAS  PubMed  Google Scholar 

  • Gevins AS, Schaffer RE. A critical review of electroencephalographic (EEG) correlates of higher cortical functions. Crit Rev Bioeng. 1980;4(2):112–64.

    Google Scholar 

  • Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37:424–38.

    Article  Google Scholar 

  • Granger CWJ. Testing for causality: a personal viewpoint. J Econ Dyn Control. 1980;2(1):329–52.

    Article  Google Scholar 

  • Haig AR, Gordon E, Wright JJ, et al. Synchronous cortical gamma-band activity in task-relevant cognition. Neuroreport. 2000;11(4):669–75.

    Article  CAS  PubMed  Google Scholar 

  • Haufe S, Nikulin VV, Müller KR, et al. A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage. 2013;64:120–33.

    Article  PubMed  Google Scholar 

  • Jalili M, Lavoie S, Deppen P, et al. Disconnection topography in schizophrenia revealed with state-space analysis of EEG. PLoS One. 2007;2(10):e1059.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamal W, Das S, Maharatna K, et al. Brain connectivity analysis from EEG signals using stable phase-synchronized states during face perception tasks. Physica A. 2015;434:273–95.

    Article  Google Scholar 

  • Kamiński MJ, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern. 1991;65(3):203–10.

    Article  PubMed  Google Scholar 

  • Kim CS, Bae CS, Tcha HJ. A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data. BMC Bioinformatics. 2008;9(1):56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim DJ, Bolbecker AR, Howell J, et al. Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. NeuroImage Clin. 2013;2:414–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knyazeva MG, Innocenti GM, Carmeli C, et al. Assessment of EEG synchronization based on state-space analysis. Neuroimage. 2005;25(2):339–54.

    Article  PubMed  Google Scholar 

  • Kocsis B, Bragin A, Buzsáki G. Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J Neurosci Off J Soc Neurosci. 1999;19(14):6200–12.

    CAS  Google Scholar 

  • Kramer MA, Edwards E, Soltani M, et al. Synchronization measures of bursting data: application to the electrocorticogram of an auditory event-related experiment. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70:127–50.

    Article  CAS  Google Scholar 

  • Kraskov A, Stőgbauer H, Grassberger P. Estimating mutual information. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;69:279–307.

    Article  CAS  Google Scholar 

  • Kus R, Kaminski M, Blinowska KJ. Determination of EEG activity propagation: pair-wise versus multichannel estimate. IEEE Trans Bio-Med Eng. 2004;51(9):1501–10.

    Article  Google Scholar 

  • Lachaux J, Rodriguez E, Martinerie J, et al. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence W. Synchronous neural oscillations and cognitive processes. Trends Cogn Sci. 2003;7(12):553–9.

    Article  Google Scholar 

  • Le Van Quyen M. Disentangling the dynamic core: a research program for a neurodynamics at the large scale. Biol Res. 2003;36:61–82.

    Google Scholar 

  • Lee SH, Park YM, Kim DW, et al. Global synchronization index as a biological correlate of cognitive decline in Alzheimer’s disease. Neurosci Res. 2010;66(4):333–9.

    Article  PubMed  Google Scholar 

  • Li XL, Cui D, Jiruska P, et al. Synchronization measurement of multiple neuronal populations. Neurosci Lett. 2007;98(6):3341–8.

    Google Scholar 

  • Liberati D, Cursi M, Locatelli T, et al. Total and partial coherence analysis of spontaneous and evoked EEG by means of multi-variable autoregressive processing. Med Biol Eng Comput. 1997;35(35):124–30.

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva FH, Vos JE, Mooibroek J, et al. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroencephalogr Clin Neurophysiol. 1980;50:449–56.

    Article  CAS  PubMed  Google Scholar 

  • Lytton WW. Computer modelling of epilepsy. Nat Rev Neurosci. 2008;9(8):626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mckenna TM, Mcmullen TA, Shlesinger MF. The brain as a dynamic physical system. Neuroscience. 1994;60(3):587–605.

    Article  CAS  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, et al. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett. 2006;402(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  • Min BC, Jin SH, Kang IH, et al. Analysis of mutual information content for EEG responses to odor stimulation for subjects classified by occupation. Chem Senses. 2003;28(9):741–9.

    Article  PubMed  Google Scholar 

  • Mirski MA, Tsai YC, Rossell LA, et al. Anterior thalamic mediation of experimental seizures: selective EEG spectral coherence. Epilepsia. 2003;44(3):355–65.

    Article  PubMed  Google Scholar 

  • Mormann F, Lehnertz K, David P, et al. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D Nonlinear Phenomena. 2000;144:358–69.

    Article  Google Scholar 

  • Müller M, Baier G. Detection and characterization of changes of the correlation structure in multivariate time series. Phys Rev E. 2005;71:046116.

    Article  CAS  Google Scholar 

  • Müller M, Lopez Y, Rummel C, et al. Localized short-range correlations in the spectrum of the equal-time correlation matrix. Phys Rev E Stat Nonlin Soft Matter Phys. 2006a;74:159–63.

    Article  CAS  Google Scholar 

  • Müller M, Wegner K, Kummer U, et al. Quantification of cross correlations in complex spatiotemporal systems. Phys Rev E Stat Nonlin Soft Matter Phys. 2006b;73:046106.

    Article  PubMed  CAS  Google Scholar 

  • Osipov GV, Kurths J. Regular and chaotic phase synchronization of coupled circle maps. Phys Rev E. 2001;65:016216.

    Article  CAS  Google Scholar 

  • Osipov GV, Pikovsky AS, Rosenblum MG, et al. Phase synchronization effects in a lattice of nonidentical Rössler oscillators. Phys Rev E Stat Nonlin Soft Matter Phys. 1997;55(3):2353–61.

    Article  CAS  Google Scholar 

  • Palus M, Stefanovska A. Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67:055201.

    Article  PubMed  CAS  Google Scholar 

  • Pereda E, Quiroga EQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005;77:1–37.

    Article  PubMed  Google Scholar 

  • Pikovsky AS, Rosenblum MG, Kurths J. Synchronization in a population of globally coupled chaotic oscillators. Epl. 1996;34(3):165–70.

    Article  CAS  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J. Synchronization: a universal concept in nonlinear sciences. Am J Phys. 2001;70(6):655–5.

    Google Scholar 

  • Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded medial temporal lobe seizures. Clin Neurophysiol. 2007;118(4):918–27.

    Article  CAS  PubMed  Google Scholar 

  • Quian Quiroga R, Arnhold J, Grassberger P. Learning driver-response relationships from synchronization patterns. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;61:5142–8.

    Google Scholar 

  • Quian Quiroga R, Kraskov A, Kreuz T, et al. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E. 2002;65:041903.

    Article  CAS  Google Scholar 

  • Rodriguez E, George N, Lachaux JP, et al. Perception’s shadow: long-distance synchronization of human brain activity. Nature. 1999;397(6718):430–3.

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;1(11):1804–7.

    Article  Google Scholar 

  • Rosenblum M, Pikovsky A, Kurths J. Phase synchronization: from theory to data analysis. Handb Biol Phys. 2001;4:93–4.

    Google Scholar 

  • Rosso OA, Blanco S, Yordanova J, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods. 2001;105(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  • Rulkov NF, Sushchik MM, Tsimring LS, et al. Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995;51(2):980–94.

    PubMed  Google Scholar 

  • Sameshima K, Baccalá LA. Using partial directed coherence to describe neuronal ensemble interactions. J Neurosci Methods. 1999;94(1):93–103.

    Article  CAS  PubMed  Google Scholar 

  • Schelter B, Winterhalder M, Eichler M, et al. Testing for directed influences among neural signals using partial directed coherence. J Neurosci Methods. 2005;152:210–9.

    Article  PubMed  Google Scholar 

  • Schelter B, Winterhalder M, Hellwig B, et al. Direct or indirect? Graphical models for neural oscillators. J Physiol Paris. 2006;99(1):37–46.

    Article  PubMed  Google Scholar 

  • Schiff SJ, So P, Chang T, et al. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996;54(6):6708–24.

    CAS  PubMed  Google Scholar 

  • Schmitz A. Measuring statistical dependence and coupling of subsystems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62:7508–11.

    CAS  PubMed  Google Scholar 

  • Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests. Phys Rev Lett. 1996;77(4):635–8.

    Article  CAS  PubMed  Google Scholar 

  • Seba P. Random matrix analysis of human EEG data. Phys Rev Lett. 2003;91(19):198104.

    Article  CAS  PubMed  Google Scholar 

  • Shabunin A, Demidov V, Astakhov V, et al. Information theoretic approach to quantify complete and phase synchronization of chaos. Phys Rev E. 2002;65:634–4.

    Google Scholar 

  • Shannon CE. A mathematical theory of communication. Bell Syst Technic J. 1948;27(3):379–423.

    Article  Google Scholar 

  • Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam CJ, van Dijk BW. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D Nonlinear Phenomena. 2002;163:236–51.

    Article  Google Scholar 

  • Stam CJ, Jones BF, Nolte G, et al. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex. 2007;17(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  • Steuer R, Kurths J, Daub CO, et al. The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics. 2002;18:231–40.

    Article  Google Scholar 

  • Sun FT, Miller LM, D’Esposito M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage. 2004;21(2):647–58.

    Article  PubMed  Google Scholar 

  • Tass P, Rosenblum MG, Weule J, et al. Detection of n: m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett. 1998;81:3291–4.

    Article  CAS  Google Scholar 

  • Thuraisingham RA. A new method using coherence to obtain the model order in the evaluation of partial directed coherence. Comput Biol Med. 2007;37(9):1361–5.

    Article  CAS  PubMed  Google Scholar 

  • Traub RD, Spruston N, Soltesz I, et al. Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity. Prog Neurobiol. 1998;55(6):563–75.

    Article  CAS  PubMed  Google Scholar 

  • Tucker DM, Roth DL, Bair TB. Functional connections among cortical regions: topography of EEG coherence. Electroencephalogr Clin Neurophysiol. 1986;63(3):242–50.

    Article  CAS  PubMed  Google Scholar 

  • Van Albada SJ, Robinson PA. Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and parkinsonian states. J Theor Biol. 2009;257(4):642–63.

    Article  PubMed  Google Scholar 

  • Van Albada SJ, Gray RT, Drysdale PM, et al. Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of parkinsonian oscillations. J Theor Biol. 2009;257(4):664–88.

    Article  PubMed  Google Scholar 

  • Van Putten MJAM. Proposed link rates in the human brain. J Neurosci Methods. 2003;127(1):1–10.

    Article  PubMed  Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, et al. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2(4):229–39.

    Article  CAS  PubMed  Google Scholar 

  • Winterhalder M, Schelter B, Hesse W, et al. Comparison of time series analysis techniques to detect direct and time-varying interrelations in multivariate, neural systems. Signal Process. 2005;85:2137–60.

    Article  Google Scholar 

  • Winterhalder M, Schelter B, Hesse W, et al. Detection of directed information flow in biosignals. Biomed Tech. 2006;51(5-6):281–7.

    Article  Google Scholar 

  • Womelsdorf T, Schoffelen JM, Oostenveld R. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316(5831):1609–12.

    Article  CAS  PubMed  Google Scholar 

  • Wu MH, Frye RE, Zouridakis G. A comparison of multivariate causality based measures of effective connectivity. Comput Biol Med. 2011;41:1132–41.

    Article  PubMed  Google Scholar 

  • Xu JW, Bakardjian H, Cichocki A, et al. A new nonlinear similarity measure for multichannel signals. Neural Netw Off J Int Neural Netw Soc. 2008;21:222–31.

    Article  Google Scholar 

  • Yoshimura M, Isotani T, Yagyu T, et al. Global approach to multichannel electroencephalogram analysis for diagnosis and clinical evaluation in mild Alzheimer’s disease. Neuropsychobiology. 2004;49(3):163–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Cui, D., Li, X. (2016). Multivariate EEG Synchronization Strength Measures. In: Li, X. (eds) Signal Processing in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-1822-0_12

Download citation

Publish with us

Policies and ethics