Skip to main content

The Comodulation Measure of Neuronal Oscillations

  • Chapter
  • First Online:
  • 1763 Accesses

Abstract

Brain functions are related to neuronal networks of different size and distribution, which oscillate at different frequencies. Thus the synchronisation between these neuronal networks is often reflected by neuronal interaction between different frequency bands, and the description of this cross-frequency interaction is a crucial issue in understanding the modulation mechanisms between neuronal populations. In this chapter, a phase randomisation-based wavelet bicoherence method was introduced, which allows us to reliably measure the comodulation of neuronal oscillations between different frequency bands. The performance of the improved wavelet bicoherence method was evaluated by a simulation study, which showed that the method can detect a reliable phase coupling value, and spurious bicoherence values can be effectively eliminated through the operation of phase randomisation. In what follows, this method was applied to investigate the cross-frequency interaction in physiological signals: the electrocorticogram data recorded from rats during transitions between slow-wave sleep (SWS), rapid eye movement (REM) sleep and waking was analysed to describe the phase coupling dynamics of different states, and then the scalp EEG data recorded in patients under isoflurane anaesthesia was studied to examine the relationship between the patterns of wavelet bicoherence and the isoflurane concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amzica F, Steriade M. The K-complex: its slow (<1Hz) rhythmicity and relation to delta waves. Neurology. 1997;49:952–9.

    Article  CAS  PubMed  Google Scholar 

  • Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med. 2010;363:2638–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullock TH, Achimowicz JZ, Duckrow RB, Spencer SS, Iragui-Madoz VJ. Bicoherence of intracranial EEG in sleep, wakefulness and seizures. Electroencephalogr Clin Neurophysiol. 1997;103:661–78.

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Powers J. The statistics of wavelet-based bicoherence. In: Proceedings of the IEEE-SP international symposium on time-frequency and time-scale analysis. Pittsburgh; 1998. p. 141–144.

    Google Scholar 

  • Cui D, Liu X, Wan Y, Li X. Estimation of genuine and random synchronization in multivariate neural series. Neural Netw. 2010;23:698–704.

    Article  PubMed  Google Scholar 

  • Dauwels J, Vialatte F, Musha T, Cichocki A. A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage. 2010;49:668–93.

    Article  CAS  PubMed  Google Scholar 

  • Eschenko O, Ramadan W, Mölle M, Born J, Sara SJ. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem. 2008;15:373–7.

    Article  Google Scholar 

  • Gais S, Born J. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci U S A. 2004;101:2140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I. Practical issues in bispectral analysis of electroencephalographic signals. Anesth Analg. 2001;93(4):966–70.

    Article  CAS  PubMed  Google Scholar 

  • Hagihira S, Takashina M, Mori T, Mashimo T, Yoshiya I. Changes of electroencephalographic bicoherence during isoflurane anesthesia combined with epidural anesthesia. Anesthesiology. 2002;97(6):1409–15.

    Article  CAS  PubMed  Google Scholar 

  • Hagihira S, Takashina M, Mori T, Ueyama H, Mashimo T. Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia. Anesthesiology. 2004;100(4):818–25.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Sawa T, Matsuura M. Anesthesia depth-dependent features of electroencephalographic bicoherence spectrum during sevoflurane anesthesia. Anesthesiology. 2008;108(5):841–50.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Tsuda N, Sawa T, Hagihira S. Ketamine increases the frequency of electroencephalographic bicoherence peak on the alpha spindle area induced with propofol. Br J Anesthesiol. 2007;99(3):389–95.

    Article  CAS  Google Scholar 

  • Isler JR, Grieve PG, Czernochowski D, Stark RI, Friedman D. Cross-frequency phase coupling of brain rhythms during the orienting response. Brain Res. 2008;26(1232):163–72.

    Article  Google Scholar 

  • Jensen O, Colgin LL. Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci. 2007;11:267–9.

    Article  PubMed  Google Scholar 

  • Johansen JW, Sebel PS. Development and clinical application of electroencephalographic bispectrum monitoring. Anesthesiology. 2000;93(5):1336–44.

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Powers EJ. Digital bispectral analysis and its applications to nonlinear wave interactions. IEEE Trans Plasma Sci. 1979;7:120–31.

    Article  Google Scholar 

  • Kim T, Powers EJ, Grady WM, Arapostathis A. A novel QPC detector for the health monitoring of rotating machines. In: Proceedings of IEEE instrumentation and measurement technology conference. Warsaw; 2007. p. 1–6.

    Google Scholar 

  • Koronovskii AA, Khramov AE. Wavelet bicoherence analysis as a method for investigating coherent structures in an electron beam with an overcritical current. Plasma Phys Rep. 2002;28(8):666–81.

    Article  Google Scholar 

  • Larsen Y, Hanssen A, Pecseli HL. Analysis of non-stationary mode coupling by means of wavelet-bicoherence. IEEE international conference on acoustics, speech, and signal processing. Salt Lake City. 2001; p. 3581–3584.

    Google Scholar 

  • Li X, Cui D, Jiruska P, Fox JE, Yao X, Jefferys JGR. Synchronization measurement of multiple neuronal populations. J Neurophysiol. 2007;98:3341–8.

    Article  PubMed  Google Scholar 

  • Mallat S. A wavelet tour of signal processing. 2nd ed. New York: Academic Press; 1999.

    Google Scholar 

  • Marquet P. The role of sleep in learning and memory. Science. 2001;294:1048–52.

    Article  Google Scholar 

  • Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of cortical effective connectivity during sleep. Science. 2005;309(5744):2228–32.

    Article  CAS  PubMed  Google Scholar 

  • Morimoto Y, Hagihira S, Yamashita S, Iida Y, Matsumoto M, Tsuruta S, Sakabe T. Changes in electroencephalographic bicoherence during sevoflurane anesthesia combined with intravenous fentanyl. Anesth Analg. 2006;103(3):641–5.

    Article  CAS  PubMed  Google Scholar 

  • Mölle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22:10941–7.

    PubMed  Google Scholar 

  • Murphy M, Bruno MA, Riedner BA, et al. Propofol anesthesia and sleep: a high-density EEG study. Sleep. 2011;34:283–91A.

    PubMed  PubMed Central  Google Scholar 

  • Musizza B, Ribaric S. Monitoring the depth of anaesthesia. Sensors. 2010;10:10896–935.

    Article  PubMed  PubMed Central  Google Scholar 

  • Newland DE. Harmonic wavelet analysis. Proc R Soc Lond A. 1993;443:203–25.

    Article  Google Scholar 

  • Newland DE. Harmonic and musical wavelets. Proc R Soc Lond A. 1994a;444:605–20.

    Article  Google Scholar 

  • Newland DE. Wavelet analysis of vibration, part 1: theory, part 2: wavelet maps. J Vib Acoust Trans ASME. 1994b;116:409–25.

    Article  Google Scholar 

  • Nikias CL, Raghuveer MR. Bispectrum estimation: a digital signal processing framework. Proc IEEE. 1987;75:869–91.

    Article  Google Scholar 

  • Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591–605.

    Article  CAS  PubMed  Google Scholar 

  • Pritchett S, Zilberg E, Xu Z, Myles P, Brown I, Burton D. Peak and averaged bicoherence for different EEG patterns during general anaesthesia. BioMed Eng OnLine. 2010;9:76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.

    Article  CAS  PubMed  Google Scholar 

  • Rasch BH, Born J, Gais S. Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci. 2006;18:793–802.

    Article  PubMed  Google Scholar 

  • Rasch B, Buchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science. 2007;315:1426–9.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro S, Nicolelis MAL. Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem. 2004;11:686–96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schack B, Vath N, Petsche H, Geissler HG, Moller E. Phase-coupling of thetagamma EEG rhythms during short-term memory processing. Int J Psychophysiol. 2002;44:143–63.

    Article  CAS  PubMed  Google Scholar 

  • Schanze T, Eckhorn R. Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications. Int J Psychophysiol. 1997;26:171–89.

    Article  CAS  PubMed  Google Scholar 

  • Shils JL, Litt M, Skolnick BE, Stecker MM. Bispectral analysis of visual interactions in humans. Electroencephalogr Clin Neurophysiol. 1996;98:113–25.

    Article  CAS  PubMed  Google Scholar 

  • Simonovski I, Boltezar M. The norms and variances of the Gabor, Morlet and general harmonic wavelet functions. J Sound Vib. 2003;264:545–57.

    Article  Google Scholar 

  • Sleigh JW, Andrzejowski J, Steyn-Ross A, Steyn-Ross M. The bispectral index: a measure of depth of sleep? Anesth Analg. 1999;88(3):659–861.

    Article  CAS  PubMed  Google Scholar 

  • Spencer RMC, Gouw AM, Ivry RB. Age-related decline of sleep-dependent consolidation. Learn Mem. 2007;14:480–4.

    Article  PubMed  Google Scholar 

  • Steriade M. Impact of network activities on neuronal properties in corticothalamic systems. J Neurophysiol. 2001;86:1–39.

    CAS  Google Scholar 

  • Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience. 2006;137:1087–106.

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, Nunez A, Amzica F. A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci. 1993;13:3252–65.

    CAS  PubMed  Google Scholar 

  • Steriade M, Contreras D, Amzica F, Timofeev I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci. 1996;16:2788–808.

    CAS  PubMed  Google Scholar 

  • Stickgold R, Walker MP. Sleep and memory: the ongoing debate. Sleep. 2005;28:1225–7.

    PubMed  Google Scholar 

  • Torrence C, Compo GP. A practical guide to wavelet analysis. Bull Am Meteorol Soc. 1998;79:61–78.

    Article  Google Scholar 

  • van Betteray JN, Vossen JM, Coenen AM. Behavioural characteristics of sleep in rats under different light/dark conditions. Physiol Behav. 1991;50:79–82.

    Article  PubMed  Google Scholar 

  • van Milligen BP, Sánchez E, Estrada T, Hidalgo C, Brañas B, Carreras B, García L. Wavelet bicoherence: a new turbulence analysis tool. Phys Plasmas. 1995;2(8):3017–32.

    Article  Google Scholar 

  • Vertes RP, Siegel JM. Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep. 2005;28:1228–9.

    PubMed  Google Scholar 

  • von Stein A, Chiang C, Konig P. Top-down processing mediated by interareal synchronization. Proc Natl Acad Sci USA. 2000;97:14748–53.

    Article  Google Scholar 

  • Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep. 2007;30(12):1631–42.

    PubMed  PubMed Central  Google Scholar 

  • Walker MP, Stickgold R. Sleep, memory, and plasticity. Annu Rev Psychol. 2006;57:139–66.

    Article  PubMed  Google Scholar 

  • Wolansky T, Clement EA, Peters SR, Palczak MA, Dickson CT. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci. 2006;26:6213–29.

    Article  CAS  PubMed  Google Scholar 

  • Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P. Modulation of neuronal interactions through neuronal synchronization. Science. 2007;316:1609–12.

    Article  CAS  PubMed  Google Scholar 

  • Zar JH. Biostatistical analysis. 4th ed. Upper Saddle River: Prentice-Hall; 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, D., Li, X. (2016). The Comodulation Measure of Neuronal Oscillations. In: Li, X. (eds) Signal Processing in Neuroscience. Springer, Singapore. https://doi.org/10.1007/978-981-10-1822-0_11

Download citation

Publish with us

Policies and ethics