Skip to main content

Abstract

Cable-suspended parallel robots (CPR) are parallel manipulators in which the end-effectors are driven by cables instead of rigid links. The CPRs can be required not only for operations with greater flexibility, but also for large reachable workspace and high payload. The development of the cable-driven parallel manipulator is introduced and the latest advance in theory and applications of cable-driven parallel manipulator is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carricato M, Merlet JP (2013) Stability analysis of underconstrained cable-driven parallel robots. IEEE Trans Rob 29(1):288–296

    Article  Google Scholar 

  2. Zi B, Duan BY, Du JL et al (2008) Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1):1–12

    Article  Google Scholar 

  3. Castelli G, Ottaviano E, Rea P (2014) A cartesian cable-suspended robot for improving end-users’ mobility in an urban environment. Robot Comput Integr Manuf 30(3):335–343

    Article  Google Scholar 

  4. Lahouar S, Ottaviano E, Zeghoul S et al (2009) Collision free path-planning for cable-driven parallel robots. Robot Auton Syst 57(11):1083–1093

    Article  Google Scholar 

  5. Korayem MH, Tourajizadeh H, Zehfroosh A et al (2014) Optimal path planning of a cable-suspended robot with moving boundary using optimal feedback linearization approach. Nonlinear Dyn 78(2):1515–1543

    Article  MathSciNet  MATH  Google Scholar 

  6. Ming A, Higuchi T (1994) Study on multiple degree-of-freedom positioning mechanism using wires. I: Concept, design and control. Int J Jpn Soc Precis Eng 28(2):131–138

    Google Scholar 

  7. Zi B, Cao J, Zhu H et al (2014) Comparative study of cable parallel manipulators with and without hybrid-driven planar five-bar mechanism. Appl Math Model 38(24):5994–6017

    Article  MathSciNet  Google Scholar 

  8. Kino H, Yahiro T, Taniguchi S et al (2009) Sensorless position control using feedforward internal force for completely restrained parallel-wire-driven systems. IEEE Trans Rob 25(2):467–474

    Article  Google Scholar 

  9. Arsenault M (2013) Workspace and stiffness analysis of a three-degree-of-freedom spatial cable-suspended parallel mechanism while considering cable mass. Mech Mach Theory 66:1–13

    Article  Google Scholar 

  10. Jiang Q, Kumar V (2013) The inverse kinematics of cooperative transport with multiple aerial robots. IEEE Trans Rob 29(1):136–145

    Article  Google Scholar 

  11. Michael N, Kim S, Fink J, et al (2009) Kinematics and statics of cooperative multi-robot aerial manipulation with cables. ASME 2009 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp 83–91

    Google Scholar 

  12. Zi B, Lin J, Qian S (2015) Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes. Robot Comput Integr Manuf 34:105–123

    Article  Google Scholar 

  13. Tang X, Yao R (2011) Dimensional design on the six-cable driven parallel manipulator of FAST. J Mech Des 133(11):111012

    Article  Google Scholar 

  14. Albus J, Bostelman R, Dagalakis N (1992) The NIST robocrane. J Robot Syst 10(5)

    Google Scholar 

  15. Bostelman R, Albus J, Dagalakis N, et al (1994) Applications of the NIST RoboCrane. Proceedings of the 5th international symposium on robotics and manufacturing, pp 14–18

    Google Scholar 

  16. Lytle AM, Saidi KS, Bostelman RV et al (2004) Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane. Autom Constr 13(1):101–118

    Article  Google Scholar 

  17. Rippey WG, Falco J A (1997) The NIST automated arc welding testbed. NIST Special Publication SP, pp 203–212

    Google Scholar 

  18. Amatucci E, Bostelman R, Dagalakis N, et al (1997) Summary of modeling and simulation for NIST RoboCrane applications

    Google Scholar 

  19. Williams RL (2005) Novel cable-suspended RoboCrane support. Ind Robot Int J 32(4):326–333

    Article  Google Scholar 

  20. Tanaka M, Seguchi Y, Shimada S (1988) Kineto-statics of skycam-type wire transport system. Proceedings of USA-Japan symposium on flexible automation, Crossing bridges: advances in flexible automation and robotics

    Google Scholar 

  21. German JJ, Jablokow KW, Cannon DJ (2001) The cable array robot: theory and experiment. IEEE international conference on robotics and automation, 2001. Proceedings 2001 ICRA. IEEE, vol 3. pp 2804–2810

    Google Scholar 

  22. Alp AB, Agrawal SK (2002) Cable suspended robots: design, planning and control. IEEE international conference on robotics and automation, 2002. Proceedings ICRA’02. IEEE, vol 4. pp 4275–4280

    Google Scholar 

  23. Oh S, Agrawal SK (2005) A reference governor-based controller for a cable robot under input constraints. IEEE Trans Control Syst Technol 13(4):639–645

    Article  Google Scholar 

  24. Maier T, Woernle C (1998) Inverse kinematics for an underconstrained cable suspension manipulator. Advances in robot kinematics: analysis and control. Springer, Netherlands, pp 97–104

    Book  MATH  Google Scholar 

  25. Verhoeven R, Hiller M, Tadokoro S (1998) Workspace, stiffness, singularities and classification of tendon-driven stewart platforms. Advances in robot kinematics: analysis and control. Springer, Netherlands, pp 105–114

    MATH  Google Scholar 

  26. Kawamura S, Choe W, Tanaka S, et al (1995) Development of an ultrahigh speed robot FALCON using wire drive system. 1995 IEEE international conference on robotics and automation, 1995. Proceedings. IEEE, vol 1. pp 215–220

    Google Scholar 

  27. Kawamura S, Kino H, Won C (2000) High-speed manipulation by using parallel wire-driven robots. Robotica 18(1):13–21

    Article  Google Scholar 

  28. Duan BY (1999) A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis. Mechatronics 9(1):53–64

    Article  Google Scholar 

  29. Gosselin C (2014) Cable-driven parallel mechanisms: state of the art and perspectives. Mech Eng Rev 1(1):DSM0004–DSM0004

    Google Scholar 

  30. Zi B, Zhu Z, Du JL (2011) Analysis and control of the cable-supporting system including actuator dynamics. Control Eng Pract 19(5):491–501

    Article  Google Scholar 

  31. Otis MJD, Perreault S, Nguyen-Dang TL et al (2009) Determination and management of cable interferences between two 6-DOF foot platforms in a cable-driven locomotion interface. IEEE Trans Syst Man Cybern Part A Syst Hum 39(3):528–544

    Article  Google Scholar 

  32. Lim WB, Yang G, Yeo SH et al (2011) A generic force-closure analysis algorithm for cable-driven parallel manipulators. Mech Mach Theory 46(9):1265–1275

    Article  MATH  Google Scholar 

  33. Hassan M, Khajepour A (2011) Analysis of bounded cable tensions in cable-actuated parallel manipulators. IEEE Trans Rob 27(5):891–900

    Article  Google Scholar 

  34. Duan BY, Qiu YY, Zhang FS et al (2009) On design and experiment of the feed cable-suspended structure for super antenna. Mechatronics 19(4):503–509

    Article  Google Scholar 

  35. Cone LL (1985) Skycam-an aerial robotic camera system. Byte 10(10):12

    Google Scholar 

  36. Mao Y, Agrawal SK (2012) Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans Rob 28(4):922–931

    Article  Google Scholar 

  37. Alikhani A, Behzadipour S, Alasty A et al (2011) Design of a large-scale cable-driven robot with translational motion. Robot Comput Integr Manuf 27(2):357–366

    Article  Google Scholar 

  38. Sato M (2002) Development of string-based force display: SPIDAR. 8th international conference on virtual systems and multimedia

    Google Scholar 

  39. Pott A, Mütherich H, Kraus W et al (2013) IPAnema: a family of cable-driven parallel robots for industrial applications. Cable-driven parallel robots. Springer, Berlin, pp 119–134

    Book  Google Scholar 

  40. Takemura F, Enomoto M, Tanaka T et al (2005) Development of the balloon-cable driven robot for information collection from sky and proposal of the search strategy at a major disaster, IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 658–663

    Google Scholar 

  41. Takemura F, Maeda K, Tadokoro S (2006) Attitude stability of a cable driven balloon robot. 2006 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 3504–3509

    Google Scholar 

  42. Heyden T, Woernle C (2006) Dynamics and flatness-based control of a kinematically undetermined cable suspension manipulator. Multibody SysDyn 16(2):155–177

    Article  MathSciNet  MATH  Google Scholar 

  43. Michael N, Fink J, Kumar V (2011) Cooperative manipulation and transportation with aerial robots. Auton Robots 30(1):73–86

    Article  MATH  Google Scholar 

  44. Jiang Q, Kumar V (2012) Determination and stability analysis of equilibrium configurations of objects suspended from multiple aerial robots. J Mech Robot 4(2):021005

    Article  Google Scholar 

  45. Jiang Q, Kumar V (2013) The kinematics of 3-D cable-towing systems. 21st century kinematics. Springer, London, pp 161–188

    Book  Google Scholar 

  46. Lindsey Q, Mellinger D, Kumar V (2012) Construction with quadrotor teams. Auton Robots 33(3):323–336

    Article  Google Scholar 

  47. Castelli G, Ottaviano E (2014) A cartesian cable-suspended robot for aiding mobility. Computational kinematics. Springer, Netherlands, pp 369–376

    Google Scholar 

  48. Merlet J, Daney D (2010) A portable, modular parallel wire crane for rescue operations. 2010 IEEE international conference on robotics and automation (ICRA). IEEE, pp 2834–2839

    Google Scholar 

  49. Zhu ZC, Chen PCY, Shao XG et al (2014) Forward kinematics analysis and experimental validation of a four-cable-driven under-constrained parallel mechanism. Proc Inst Mech Eng Part C J Mech Eng Sci 228(7):1235–1247

    Article  Google Scholar 

  50. Zi B, Ding H, Wu X et al (2014) Error modeling and sensitivity analysis of a hybrid-driven based cable parallel manipulator. Precis Eng 38(1):197–211

    Article  Google Scholar 

  51. Barnett E, Gosselin C (2015) Large-scale 3D printing with a cable-suspended robot. Add Manuf 7:27–44

    Google Scholar 

  52. Farcy D, Llibre M, Carton P et al (2007) SACSO: wire-driven parallel set-up for dynamic tests in wind tunnel–review of principles and advantages for identification of aerodynamic models for flight mechanics. 8th ONERA-DLR Aerospace Symposium, Göttingen

    Google Scholar 

  53. Zheng Y (2009) Force-measuring experiment for the scale model of WDPSS in low-speed wind tunnel. J Huaqiao Univ (Natural Science) 2(2)

    Google Scholar 

  54. Yang G, Lin W, Kurbanhusen MS, et al (2005) Kinematic design of a 7-DOF cable-driven humanoid arm: a solution-in-nature approach. IEEE/ASME international conference on advanced intelligent mechatronics (AIM), Monterey, CA, July 2005, pp 24–28

    Google Scholar 

  55. Mustafa SK, Yang G, Yeo SH, et al (2007) Self-calibration of a biologically-inspired cable-driven robotic arm. 2007 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 1–6

    Google Scholar 

  56. Mustafa SK, Yang G, Yeo SH, et al (2008) Kinematic calibration of a 7-DOF self-calibrated modular cable-driven robotic arm. IEEE international conference on robotics and automation, 2008. ICRA 2008. IEEE, pp 1288–1293

    Google Scholar 

  57. Capua A, Shapiro A, Shoval S (2014) SpiderBot: a cable-suspended walking robot. Mech Mach Theory 82:56–70

    Article  Google Scholar 

  58. Lau D, Oetomo D, Halgamuge SK (2013) Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix. IEEE Trans Rob 29(5):1102–1113

    Article  Google Scholar 

  59. Zhao X, Zi B, Qian L (2015) Design, analysis, and control of a cable-driven parallel platform with a 481 pneumatic muscle active support. Robotica 1–22

    Google Scholar 

  60. Hannan MW, Walker ID (2000) Analysis and initial experiments for a novel elephant’s trunk robot. 2000 IEEE/RSJ international conference on intelligent robots and systems, 2000. (IROS 2000). Proceedings. IEEE, vol 1. pp 330–337

    Google Scholar 

  61. Hannan MW, Walker ID (2003) Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J Robotic Syst 20(2):45–63

    Article  MATH  Google Scholar 

  62. Simaan N (2005) Snake-like units using flexible backbones and actuation redundancy for enhanced miniaturization. Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, pp 3012–3017

    Google Scholar 

  63. Choi DG, Yi BJ, Kim WK (2007) Design of a spring backbone micro endoscope. 2007 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1815–1821

    Google Scholar 

  64. Agrawal SK, Dubey VN, Gangloff JJ et al (2009) Design and optimization of a cable driven upper arm exoskeleton. J Med Devices 3(3):031004

    Article  Google Scholar 

  65. Mao Y, Jin X, Agrawal SK (2014) Real-time estimation of glenohumeral joint rotation center with cable-driven arm exoskeleton (CAREX)—a cable-based arm exoskeleton. J Mech Robot 6(1):014502

    Article  Google Scholar 

  66. Mao Y, Jin X, Dutta GG et al (2015) Human movement training with a cable driven arm exoskeleton (carex). IEEE Trans Neural Syst Rehabil Eng 23(1):84–92

    Article  Google Scholar 

  67. Zanotto D, Rosati G, Minto S et al (2014) Sophia-3: A semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Trans Rob 30(4):974–979

    Article  Google Scholar 

  68. Zhao X, Zi B (2013) Design and analysis of a pneumatic muscle driven parallel mechanism for imitating human pelvis. Proc Inst Mech Eng Part C J Mech Eng Sci 0954406213489410

    Google Scholar 

  69. Chen W, Cui X, Zhang J et al (2015) A cable-driven wrist robotic rehabilitator using a novel torque-field controller for human motion training. Rev Sci Instrum 86(6):065109

    Article  Google Scholar 

  70. Surdilovic D, Bernhardt R. STRING-MAN: a new wire robot for gait rehabilitation. 2004 IEEE international conference on robotics and automation, 2004. Proceedings. ICRA’04. IEEE, vol 2. pp 2031–2036

    Google Scholar 

  71. Surdilovic D, Zhang J, Bernhardt R (2007) STRING-MAN: wire-robot technology for safe, flexible and human-friendly gait rehabilitation. 2007 IEEE 10th international conference on rehabilitation robotics. IEEE, pp 446–453

    Google Scholar 

  72. Yamaura H, Matsushita K, Kato R, et al (2009) Development of hand rehabilitation system using wire-driven link mechanism for paralysis patients. 2009 IEEE international conference on robotics and biomimetics (ROBIO). IEEE, pp 209–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zi, B., Qian, S. (2017). Introduction. In: Design, Analysis and Control of Cable-suspended Parallel Robots and Its Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1753-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1753-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1752-0

  • Online ISBN: 978-981-10-1753-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics