Skip to main content

Overview on Performance-Based Engineering Under Multihazard Environments

  • Chapter
  • First Online:
  • 927 Accesses

Abstract

The advent of performance-based design approach has appeared to be widely accepted by engineering practice. According to this modern design approach, more refined analysis and evaluation of performance objectives needs to be conducted in order to achieve the design goal. Such a dedicated design process involves many aspects and elements related to hazard assessments, load determination, structural dynamics, structural reliability and structural optimization, all of which are generally reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arora, J. S. (1995). Structural design sensitivity analysis: Continuum and discrete approaches. In J. Herskovits (Ed.), Advances in structural optimization (pp. 47–70). Boston: Kluwer Academic.

    Chapter  Google Scholar 

  • Arora, J. S., & Cardoso, J. E. B. (1989). A design sensitivity analysis principle and its implementation into ADINA. Computers & Structures, 32, 691–705.

    Article  MATH  Google Scholar 

  • Au, S. K., & Beck, J. L. (2001). First excursion probabilities for linear systems by very efficient importance sampling. Probabilistic Engineering Mechanics, 16, 193–207.

    Article  Google Scholar 

  • Belyaev, Y. K. (1968). On the number of exits across the boundary of a region by a vector stochastic process. Theory of Probability and its Applications, 13(2), 320–324.

    Article  MATH  Google Scholar 

  • Bhatti, M. A., & Pister, K. S. (1981). A dual criteria approach for optimal design of earthquake-resistant structural systems. Earthquake Engineering and Structural Dynamics, 9, 557–572.

    Google Scholar 

  • Bleistein, N., & Handelsman, R. (1986). Asymptotic expansions of integrals. New York, N.Y.: Dover.

    MATH  Google Scholar 

  • Bogomolni, M., Kirsch, U., & Sheinman, I. (2006). Efficient design sensitivities of structures subjected to dynamic loading. International Journal of Solids and Structures, 43, 5485–5500.

    Article  MATH  Google Scholar 

  • Breitung, K. (1984). Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, ASCE, 110(3), 357–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Breitung, K. (1991). Probability approximations by log likelihood maximization. Journal of Engineering Mechanics, 117, 457–477.

    Article  Google Scholar 

  • Burton, M. D., Kwok, K. C. S., & Hitchcock, P. A. (2007). Occupant comfort criteria for wind-excited buildings: based on motion duration. In Proceedings of the 12th International Conference on Wind Engineering (pp. 1207–1214). Cairns, Australia, 2–6 July, 2007.

    Google Scholar 

  • Cai, G. Q., & Lin, Y. K. (1988). A new approximate solution technique for randomly excited non-linear oscillators. International Journal of Non-Linear Mechanics, 23, 409–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Carassale, L., & Solar, G. (2006). Monte Carlo simulation of wind velocity fields on complex structures. Journal of Wind Engineering and Industrial Aerodynamics, 94, 323–339.

    Article  Google Scholar 

  • Caughey, T. K. (1971). Nonlinear theory of random vibrations. Advances in Applied Mechanics (Vol. 11, pp. 209–253). New York: Academic Press,.

    Google Scholar 

  • Caughey, T. K., & Ma, F. (1982). The exact steady-state solution of a class of nonlinear stochastic systems. International Journal of Non-Linear Mechanics, 17(3), 137–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Cermak, J. E. (1977). Wind-tunnel testing of structures. Journal of the Engineering Mechanics Division, ASCE, 103, 1125–1140.

    Google Scholar 

  • Cermak, J. E. (2003). Wind-tunnel development and trends in applications to civil engineering. Journal of Wind Engineering and Industrial Aerodynamics, 91, 355–370.

    Article  Google Scholar 

  • Chan, C. M. (1992). An optimality criteria algorithm for tall steel building design using commercial standard sections. Structural Optimization, 5, 26–29.

    Article  Google Scholar 

  • Chan, C. M. (1997). How to optimize tall steel building frameworks. In J. Arora (Ed.), ASCE Manuals and Report on Engineering Practice, No. 90, Guide to Structural Optimization. ASCE (pp. 165–195).

    Google Scholar 

  • Chan, C. M. (1998). Optimal stiffness design to limit static and dynamic wind responses of tall steel buildings (pp. 94–105). Third Quarter: Engineering Journal, American Institute of Steel Construction.

    Google Scholar 

  • Chan, C. M. (2001). Optimal lateral stiffness design of tall buildings of mixed steel and concrete construction. Journal of Structural Design of Tall Buildings, 10(3), 155–177.

    Article  Google Scholar 

  • Chan, C. M., & Chui, J. K. L. (2006). Wind-induced response and serviceability design optimization of tall steel buildings. Engineering Structures, 28(4), 503–513.

    Article  Google Scholar 

  • Chan C. M., & Wong K. M. (2007). Structural topology and element sizing design optimization of tall steel frameworks using a hybrid OCGA method. Journal of Structural and Multidisciplinary Optimization (accepted for publication).

    Google Scholar 

  • Chan, C. M., & Zou, X. K. (2004). Elastic and inelastic drift performance optimization for reinforced concrete building under earthquake loads. Earthquake Engineering and Structural Dynamics, 33(8), 929–950.

    Article  Google Scholar 

  • Chan, C. M., Grierson, D. E., & Sherbourne, A. N. (1995). Automatic optimal design of tall steel building frameworks. Journal of Structural Engineering, ASCE, 121(5), 838–847.

    Article  Google Scholar 

  • Chan C. M., Chui J. K. L., & Huang M. F. (2007). Integrated aerodynamic load determination and stiffness optimization of tall buildings. In press in Journal of Structural Design of Tall and Special Buildings (published online in July 2007).

    Google Scholar 

  • Chandu, S. V. L., & Grandhi, R. V. (1995). General purpose procedure for reliability based structural optimization under parametric uncertainties. Advances in engineering software (Vol. 23, pp. 7–14). Elsevier Science Limited.

    Google Scholar 

  • Chang, C. C., Ger, J. F., & Cheng, F. Y. (1994). Reliability-based optimum design for UBC and nondeterministic seismic spectra. Journal of Structural of Engineering, 120(1), 139–160.

    Article  Google Scholar 

  • Chen, X. (2007). Prediction of Alongwind tall building response to transient winds. In Proceedings of the 12th International Conference on Wind Engineering (pp. 263–270). Cairns, Australia, 2–6 July, 2007.

    Google Scholar 

  • Chen, X., & Kareem, A. (2005a). Dynamic wind effects on buildings with 3D coupled Modes: Application of high frequency force balance measurements. Journal of Engineering Mechanics, 131, 1115–1125.

    Article  Google Scholar 

  • Chen, X., & Kareem, A. (2005b). Coupled dynamic analysis and equivalent static wind loads on buildings with three-dimensional modes. Journal of Structural Engineering, 131, 1071–1082.

    Article  Google Scholar 

  • Chen, L., & Letchford, C. W. (2004a). A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure. Engineering Structure, 26(5), 619–629.

    Article  Google Scholar 

  • Chen, L., & Letchford, C. W. (2004b). Parametric study on the along-wind response of the CAARC building to downbursts in the time domain. Journal of Wind Engineering and Industrial Aerodynamics, 92(9), 703–724.

    Article  Google Scholar 

  • Cheng, F. Y., & Truman, K. Z. (1983). Optimization algorithm of 3D building systems for static and seismic loading. In W. F. Ames, (Ed.), Modeling and simulation in engineering (pp. 315–326). North-Holland Pub. Co.

    Google Scholar 

  • Chock, G., Boggs, D., & Peterka, J. (1998). A wind and hurricane design framework for multi-hazard performance-based engineering of high-rise buildings. Structural Engineering World Wide, T139-3.

    Google Scholar 

  • Choi, K. K., & Kim, N. H. (2005). Structural sensitivity analysis and optimization. New York: Springer Science.

    Google Scholar 

  • Choi, W. S., & Park, G. J. (2002). Structural optimization using equivalent static loads at all time intervals. Computer Methods in Applied Mechanics and Engineering, 191, 2077–2094.

    MATH  Google Scholar 

  • Choi, K. K., Haug, E. J., & Seong, H. G. (1983). An iterative method for finite dimensional structural optimization problems with repeated eigenvalues. International Journal for Numerical Methods in Engineering, 19, 93–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Chopra, A. K. (2000). Dynamics of Structures: Theory and applications to earthquake engineering. New Jersey: Prentice-Hall.

    Google Scholar 

  • Clark, T. L., T, Keller, Janice, C., Peter, N., Hsiao-Ming, H., & William, D. H. (1997). Terrain-induced turbulence over lantau Island of Hong Kong: 7 June 1994 tropical storm Russ case study. Journal of the Atmospheric Sciences, 54, 1795–1814.

    Article  Google Scholar 

  • Clough, R. W., & Penzien, J. (1993). Dynamics of structures. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A. (2002). Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering, ASCE, 128(4), 526–533.

    Article  Google Scholar 

  • Davenport, A. G. (1961). The spectrum of horizontal gustiness near the ground in high winds. Quarterly Journal of the Royal Meteorological Society, 88(376), 194–211.

    Article  Google Scholar 

  • Davenport, A. G. (1963). The buffeting of structures by gusts. In Proceedings, International Conference on Wind Effects on Buildings and Structures (pp. 358–391). Teddington U.K., 26–8 June.

    Google Scholar 

  • Davenport, A. G. (1964). Note on the distribution of the largest value of a random function with application to gust loading. Proceedings of the International of Civil Engineering, 28, 187–196.

    Google Scholar 

  • Davenport, A. G. (1967). Gust loading factors. Journal of Structural Engineering ASCE, 93, 11–34.

    Google Scholar 

  • Davenport, A. G. (1995). How can we simplify and generalize wind loading? Journal of Wind Engineering and Industrial Aerodynamics, 54(55), 657–669.

    Article  Google Scholar 

  • Davenport, A. G., & Isyumov, N. (1967). The application of the boundary layer wind tunnel to the prediction of wind loading. In Proceedings, International Research Seminar on Wind Effects on Buildings and Structures (pp. 201–230). Ottawa, Canada, 11–15 September.

    Google Scholar 

  • Deodatis, G. (1996). Simulation of ergodic multivariate stochastic processes. Journal of Engineering Mechanics, 112(8), 778–787.

    Article  Google Scholar 

  • Der Kiureghian, A. (1996). Structural reliability methods for seismic safety assessment: a review. Engineering Structures, 18(6), 412–42.

    Google Scholar 

  • Der Kiureghian, A. (2000). The geometry of random vibrations and solutions by FORM and SORM. Probabilistic Engineering Mechanics, 15, 81–90.

    Google Scholar 

  • Der Kiureghian, A., Lin, H. Z., & Hwang, S. J. (1987). Second-order reliability approximations. Journal of Engineering Mechanics, 113, 1208–1225.

    Google Scholar 

  • Di Paola, M., & Muscolino, G. (1990). Differential moment equations of FE modeled structures with geometrical non-linearities. International Journal of Non-linear Mechanics, 25(4), 363–373.

    Article  MATH  Google Scholar 

  • Di Paola, M., Falsone, G., & Pirrotta, A. (1992). Stochastic response analysis of nonlinear systems under Gaussian inputs. Probabilistic Engineering Mechanics, 7, 15–21.

    Article  Google Scholar 

  • Dimentberg, M. F. (1982). An exact solution to a certain nonlinear random vibration problem. International Journal of Non-Linear Mechanics, 17(4), 231–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Dimentberg, M. F. (2005). Random vibrations of a rotating shaft with non-linear damping. International Journal of Non-Linear Mechanics, 40, 711–713.

    Article  MATH  Google Scholar 

  • Grell G. A., Dudhia, J., & Stauffer, D. R. (1994). A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). NCAR Technical Note, NCAR/TN-398+STR.

    Google Scholar 

  • Enevoldsen, I., & Sorensen, J. D. (1994). Reliability-based optimization in structural engineering. Structural Safety, 15, 169–196.

    Article  Google Scholar 

  • Er, G. K. (1998). Multi-Gaussian closure method for randomly excited nonlinearsystems. International Journal of Non-linear Mechanics, 33, 201–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Evgrafov, A., & Patriksson, M. (2003). Stochastic structural topology optimization: Discretization and penalty function approach. Structural and Multidisciplinary Optimization, 25(3), 174–188.

    Article  MathSciNet  MATH  Google Scholar 

  • Federal Emegency Management Agency (FEMA). (2008). Hazus-MH estimated annualized earthquake losses for the United States, federal emergency management agency, FEMA 366, Washington, D.C.

    Google Scholar 

  • Federal Emergency Management Agency (FEMA). (1997). NEHRP Guidelines and commentary for Seismic Rehabilitation of Buildings. FEMA-273.

    Google Scholar 

  • Federal Emergency Management Agency (FEMA). (2000a). Action plan for performance based seismic design. FEMA-349, SAC Joint Venture, Washington, D.C.

    Google Scholar 

  • Federal Emergency Management Agency (FEMA). (2000b). Recommended seismic design criteria for new steel moment frame buildings. FEMA-350, SAC Joint Venture Washington, D.C.

    Google Scholar 

  • Ferris, M. C., & Pang, J. S. (1997). Engineering and economic applications of complementarity problems. Society for Industrial and Applied Mathematics Review, 39(4), 669–713.

    MathSciNet  MATH  Google Scholar 

  • Ferris, M. C., & Tin-Loi, F. (2001). Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. International Journal of Mechanical Sciences, 43(1), 209–224.

    Article  MATH  Google Scholar 

  • Fishman, G. S. (1996). Monte Carlo: Concepts algorithms, and applications. New York: Springer, Springer series in operations research.

    Book  MATH  Google Scholar 

  • Flay, G. J., Buttgereit, V. O., Bailey, K. I., Obasaju, E., & Brendling, W. J. (2003). A comparison of force and pressure measurements on a tall building with coupled mode shapes. In Proceedings of the 11th International Conference on Wind Engineering (pp. 2373–2380). Texas Tech University, 2–5 June 2003.

    Google Scholar 

  • Fletcher, R., & Powell, M. J. D. (1963). A rapidly convergent descent method for minimization. The Computer Journal, 6, 163–168.

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal, 7, 149–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Foley, C. M. (2002). Optimized performance-based design for buildings. Recent Advance in Optimal Structural Design, 169–240.

    Google Scholar 

  • Frangopol, D. M. (1985a). Sensitivity of reliability-based optimum design. Journal of Structural Engineering, ASCE, 111(8), 1703–1721.

    Article  Google Scholar 

  • Frangopol, D. M. (1985b). Structural optimization using reliability concepts design. Journal of Structural Engineering, ASCE, 111(11), 2288–2301.

    Article  Google Scholar 

  • Frangopol, D. M., & Maute, K. (2003). Life-cycle reliability-based optimization of civil and aerospace structures. Computers & Structures, 81, 397–410.

    Article  Google Scholar 

  • Ganzerli, S., Pantelides, C. P., & Reaveley, L. D. (2000). Performance-based design using structural optimization. Earthquake Engineering and Structural Dynamics, 29, 1677–1690.

    Article  Google Scholar 

  • Glanville, M. J., Kwok, K. C. S., & Denoon, R. O. (1996). Full-scale damping measurements of structures in Australia. Journal of Wind Engineering and Industrial Aerodynamics, 59, 349–364.

    Article  Google Scholar 

  • Goldenberg, S. B., Christopher W. L., et al. (2001). The recent increase in atlantic hurricane activity: Causes and implications. Science, 293, 474–479.

    Google Scholar 

  • Gomes, L., & Vickery, B. J. (1977). On the prediction of extreme wind speeds from the parent distribution. Journal of Wind Engineering & Industrial Aerodynamics2(1), 21–36.

    Google Scholar 

  • Gong, Y. L., Xu, L., & Grierson, D. E. (2005). Performance-based design sensitivity analysis of steel moment frames under earthquake loading. International Journal for Numerical Methods in Engineering, 63, 1229–1249.

    Article  MATH  Google Scholar 

  • Grandall, S. H. (1963). Zero crossings, peaks, and other statistical measures of random responses. Journal of the Acoustical Society of America, 35(11), 1693–1699.

    Article  MathSciNet  Google Scholar 

  • Greene, W. H., & Haftka, R. T. (1991). Computational aspects of sensitivity calculations in linear transient structural analysis. Structural Optimization, 3, 176–201.

    Article  Google Scholar 

  • Griffis, L. G. (1993). Serviceability limit states under wind load. AISC Engineering Journal, 30(1), 1–16.

    Google Scholar 

  • Grigoriu, M. (1982). Estimates of design wind from short records. Journal of Structural Division, 108(ST5), 1034–1048.

    Google Scholar 

  • Guo, K. (1999). A consistent method for the solution to reduced FPK equation in statistical mechanics. Physica A, 262, 118–128.

    Article  Google Scholar 

  • Haftka, R. T., & Gurdal, Z. (1992). Elements of structural optimization. Dordrecht: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Harbitz, A. (1986). An efficient sampling method for probability of failure calculation. Structural Safety, 3, 109–115.

    Article  Google Scholar 

  • Harris R. I. (1963). The response of structures to gusts. In Proceedings, International Conference on Wind Effects on Buildings and Structures (pp. 394–421). Teddington U.K., 26–8 June.

    Google Scholar 

  • Harris, R. I. (1968). On the spectrum and auto-correlation function of gustiness in high winds. Electrical Research Association. Report 5273.

    Google Scholar 

  • Haug, E. J., & Arora, J. S. (1979). Applied optimal design: mechanical and structural systems. New York: Wiley-Interscience.

    Google Scholar 

  • Hilding, D., Klarbring, A., & Petersson, J. (1999). Optimization of structures in unilateral contact. Applied Mechanics Reviews, 52(4), 139–160.

    Article  Google Scholar 

  • Holemes, J. D., & Cochran, L. S. (2003). Probability distributions of extreme pressure coefficients. Journal of Wind Engineering and Industrial Aerodynamics, 91, 893–901.

    Article  Google Scholar 

  • Holmes, J. D. (2002). Effective static load distributions in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 90, 91–109.

    Article  Google Scholar 

  • Holmes, J. D., & Oliver, S. E. (2000). An empirical model of a downburst. Engineering Structure, 22, 1167–1172.

    Article  Google Scholar 

  • Holmes, J. D., Forristall, G., & McConochie, J. (2005). Dynamic response of structures to thunderstorm winds. In Proceedings of 10th Americas Conference on Wind Engineering. Baton Rouge, Louisiana, USA.

    Google Scholar 

  • Hong Kong Code of Practice. (2004a). Code of practice on wind effects in Hong Kong. Hong Kong: Buildings Department.

    Google Scholar 

  • Hong Kong Code of Practice. (2004b). Code of practice for structural use of concrete. Hong Kong: Buildings Department.

    Google Scholar 

  • Hong, H. P., Beadle, S., & Escobar, J. A. (2001). Probabilistic assessment of wind-sensitive structures with uncertain parameters. Journal of Wind Engineering and Industrial Aerodynamics, 89, 893–910.

    Article  Google Scholar 

  • Householder, A. S. (2006). Principles of numerical analysis. New York: Dover Publications.

    MATH  Google Scholar 

  • Hsieh, C. C., & Arora, J. S. (1984). Design sensitivity analysis and optimization of dynamic response. Computer Methods in Applied Mechanics and Engineering, 43, 195–219.

    Article  MATH  Google Scholar 

  • Hsieh, C. C., & Arora, J. S. (1985). A hybrid formulation for treatment of point-wise state variable constraints in dynamic response optimization. Computer Methods in Applied Mechanics and Engineering, 48, 171–189.

    Article  MATH  Google Scholar 

  • Hsieh, C. C., & Arora, J. S. (1986). Algorithms for point-wise state variable constraints in structural optimization. Computer and Structures, 22(3), 225–238.

    Article  MATH  Google Scholar 

  • Huang, M. F., & Chan, C. M. (2007). Sensitivity analysis of multi-story steel building frameworks under wind and earthquake loading. In Proceedings of the 7th World Congresses of Structural and Multidisciplinary Optimization (pp. 1376–1385). Korea: COEX Seoul, 21–25 May, 2007.

    Google Scholar 

  • Huang, G., Zheng, H., Xu, Y., & Li, Y. (2015). Spectrum models for nonstationary extreme winds. Journal of Structural Engineering. 10.1061/(ASCE)ST.1943-541X.0001257,04015010.

  • Ibrahim, R. A., Soundararajan, A., & Heo, H. (1985). Stochastic response of non-linear dynamic systems based on a non-Gaussian Closure. Journal of Applied Mechanics, ASME, 52(4), 965–970.

    Article  MathSciNet  MATH  Google Scholar 

  • Islam, S., Ellingwood, B., & Corotis, R. B. (1992). Wind-induced response of structurally asymmetric high-rise buildings. Journal of Structural Engineering, 118(1), 207–222.

    Article  Google Scholar 

  • Isyumov, N. (1994). Criteria for acceptable wind-induced motions. In Proceedings of the Structural Congress (pp. 642–647). ASCE, Atlanta, USA, 24–28 April, 1994.

    Google Scholar 

  • Jain, A., Spinivasan, M., & Hart, G. C. (2001). Performance based design extreme wind loads on a tall building. The Structural Design of tall Buildings, 10, 9–26.

    Article  Google Scholar 

  • Jensen, H. A. (2005). Structural optimization of linear dynamical systems under stochastic excitation: A moving reliability database approach. Computer Methods in Applied Mechanics and Engineering, 194, 1757–1778.

    Article  MATH  Google Scholar 

  • Jensen, H. A., & Sepulveda, A. E. (1998). Design sensitivity metric for structural dynamic response. AIAA Journal, 36, 1686–1693.

    Article  Google Scholar 

  • Kaimal, J. C., et al. (1972). Spectral characteristics of surface-layer turbulence. Journal of the Royal Meteorological Society, 98, 563–589.

    Article  Google Scholar 

  • Kang, B. S., Choi, W. S., & Park, G. J. (2001). Structural optimization under equivalent static loads transformed from dynamic loads based on displacement. Computer and Structure, 79, 145–154.

    Article  Google Scholar 

  • Kang, B. S., Park, G. J., & Arora, J. S. (2006). A review of optimization of structures subjected to transient loads. Structural and Multidisciplinary Optimization, 31, 81–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Kareem, A. (1985). Lateral-torsional motion of tall buildings to wind loads. Journal of Structural Engineering, 111(11), 2479–2496.

    Article  Google Scholar 

  • Kareem, A. (1987). Wind effects on structures: A probabilistic viewpoint. Probabilistic Engineering Mechanics, 2(4), 166–200.

    Article  Google Scholar 

  • Kareem, A., & Gurley, K. (1996). Damping in structures: its evaluation and treatment of uncertainty. Journal of Wind Engineering and Industrial Aerodynamics, 59, 131–157.

    Article  Google Scholar 

  • Kareem, A., Kabat, S., & Haan, F. L, Jr. (1998). Aerodynamics of Nanjing Tower: A case study. Journal of Wind Engineering and Industrial Aerodynamics, 77–78, 725–739.

    Article  Google Scholar 

  • Kasperski, M. (2007). Specification of the design wind load: A critical review of code concepts. In Proceedings of the 12th International Conference on Wind Engineering (pp. 41–83). Cairns, Australia, 2–6 July, 2007.

    Google Scholar 

  • Katafygiotis, L. S., & Beck, J. L. (1995). A very efficient moment calculation method for uncertain linear dynamic systems. Probabilistic Engineering Mechanics, 10, 117–128.

    Article  Google Scholar 

  • Katafygiotis, L. S., & Cheung, S. H. (2004). Wedge simulation method for calculating the reliability of linear dynamical systems. Probabilistic Engineering Mechanics, 19, 229–238.

    Article  Google Scholar 

  • Katafygiotis, L. S., & Cheung, S. H. (2006). Domain decomposition method for calculating the failure probability of linear dynamic systems subjected to gaussian stochastic loads. Journal of Engineering Mechanics, 132(5), 475–486.

    Article  Google Scholar 

  • Kim, C., & Choi, K. K. (2007). Reliability-based design optimization using response surface method considering prediction interval estimation. In Proceedings of the 7th World Congresses of Structural and Multidisciplinary Optimization (1184–1193). Korea: COEX Seoul, 21–25 May.

    Google Scholar 

  • Kim, T., & Foutch, D. A. (2007). Application of FEMA methodology to RC shear wall buildings governed by flexure. Engineering Structures, 29, 2514–2522.

    Article  Google Scholar 

  • Kim, S. H., & Wen, Y. K. (1990). Optimization of structures under stochastic loads. Structural Safety, 7(2–4), 177–190.

    Article  Google Scholar 

  • Kirsch, U. (1993). Structural optimization: Fundamentals and applications. Berlin: Springer.

    Book  Google Scholar 

  • Kirsch, U. (2000). Combined approximations—A general approach for structural optimization. Structural and Multidisciplinary Optimization, 20, 97–106.

    Article  Google Scholar 

  • Kirsch, U. (2003). Design-oriented analysis of structures—A unified approach. Journal of Engineering Mechanics, 129, 264–272.

    Article  Google Scholar 

  • Kirsch, U., & Bogomolni, M. (2007). Nonlinear and dynamic structural analysis using combined approximations. Computers & Structures, 85, 566–578.

    Article  Google Scholar 

  • Kirsch, U., Bogomolni, M., & Sheinman, I. (2007). Efficient dynamic reanalysis of structures. Journal of Structural Engineering, 133(3), 440–448.

    Article  MATH  Google Scholar 

  • Kitamura, H., Tamura, Y., Ohkuma, T. (1995). Wind resistant design and response control in Japan. Part III: Structural damping and response control. In: Proceedings of the 5th World Congress on Habitat and High-Rise Buildings, Tradition and Innovation, Amsterdam, The Netherlands.

    Google Scholar 

  • Kocer, F. Y., & Arora, J. S. (2002). Optimal design of latticed towers subjected to earthquake loading. Journal of Structural Engineering, 128, 197–204.

    Article  Google Scholar 

  • Krishnamurti, T. N., Oosterhof, D., & Dignon, N. (1989). Hurricane prediction with a high resolution global model. Monthly Weather Review, 117, 631–669.

    Google Scholar 

  • Kumar, D., & Datta, T. K. (2008). Stochastic response of articulated leg platform in probability domain. Probabilistic Engineering Mechanics, in press.

    Google Scholar 

  • Kurtaran, H., Eskandarian, A., Marzougui, D., & Bedewi, N. E. (2002). Crashworthiness design optimization using successive response surface approximations. Computational Mechanics, 29, 409–421.

    Article  MATH  Google Scholar 

  • Kwok, K. C. S., Burton, M. D., & Hitchcock, P. A. (2007). Occupant comfort and perception of motion in wind-excited tall buildings. In Proceedings of the 12th International Conference on Wind Engineering (pp. 101–115). Cairns, Australia, 2–6 July, 2007.

    Google Scholar 

  • Lagomarsino, S. (1993). Forecast models for damping and vibration periods of buildings. Journal of Wind Engineering and Industrial Aerodynamics, 48, 221–239.

    Article  Google Scholar 

  • Lagomarsino, S., & Pagnini L. C. (1995). Criteria for modelling and predicting dynamic parameters of buildings. Report ISC-II, 1, Istituto di Scienza delle Construzioni. Genova, Italy: University of Genova.

    Google Scholar 

  • Lee, T. H. (1999). An adjoint variable method for structural design sensitivity analysis of a distinct eigenvalue problem. Korean Society of Mechanical Engineers Intenational Journal, 13, 470–479.

    Google Scholar 

  • Lee, J. O., Yang, Y. S., & Ruy, W. S. (2002). A comparative study on reliability-index and target-performance-based probabilistic structural design optimization. Computers & Structures, 80, 257–269.

    Article  Google Scholar 

  • Letchford, C. W., Mans, C., & Chay, M. T. (2001). Thunderstorms-their importance in Wind Engineering, a case for the next generation wind tunnel. Journal of Wind Engineering and Industrial Aerodynamics, 89, 31–43.

    Article  Google Scholar 

  • Li, J., & Chen, J. B. (2006). The probability density evolution method for dynamic response analysis of non-linear stochastic structures. International Journal for Numerical Methods in Engineering, 65, 882–903.

    Article  MATH  Google Scholar 

  • Liang, J. W., Chaudhuri, S. R., & Shinozuka, M. (2007). Simulation of nonstationary stochastic processes by spectral representation. Journal of Engineering Mechanics, 133(6), 616–627.

    Article  Google Scholar 

  • Lin, Y. K., & Cai, G. Q. (1995). Probabilistic structural dynamics: Advanced theory and applications. New York: McGraw Hill.

    Google Scholar 

  • Lin, Y. K., & Cai, G. Q. (2000). Some thoughts on averaging techniques in stochastic dynamics. Probabilistic Engineering Mechanics, 15, 7–14.

    Article  Google Scholar 

  • Liu, Q., & Davies, H. G. (1990). The non-stationary response probability density functions of non-linearly damped oscillators subjected to white noise excitations. Journal of Sound Vibration, 139(3), 425–435.

    Article  MathSciNet  Google Scholar 

  • Liu, P. L., & Der Kiureghian, A. (1990). Optimization algorithms for structural reliability. Structural Safety, 9, 161–177.

    Article  Google Scholar 

  • Liu, Y., Zhang, D. L., & Yau, M. K. (1999). A multi-scale numerical study of hurricane Andrew, 1992: Part II: Kinematics and inner-core structures. Monthly Weather Review, 125, 3073–3093.

    Article  Google Scholar 

  • Luo, Z. Q., Pang, J. S., & Ralph, D. (1996). Mathematical programs with equilibrium constraints. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Matsui, M., Ishihara, T., & Hibi, K. (2002). Directional characteristics of probability distribution of extreme wind speeds by typhoon simulation. Journal of Wind Engineering and Industrial Aerodynamics, 90, 1541–1553.

    Article  Google Scholar 

  • McCullough, M., and Kareem, A. (2007). Global warming and hurricane intensity and frequency: The debate continues. In Proceedings of the 12th International Conference on Wind Engineering (pp. 647–654), Cairns, Australia, 2–6 July, 2007.

    Google Scholar 

  • Meirovitch, L. (1986). Elements of vibration analysis. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Melbourne, W. H., & Palmer, T. R. (1992). Accelerations and comfort criteria for buildings undergong complex motions. Journal of Wind Engineering and Industrial Aerodynamics, 41–44, 105–116.

    Article  Google Scholar 

  • Minciarelli, F., Gioffre, M., Grigoriu, M., & Simiu, E. (2001). Estimates of extreme wind effects and wind load factors: influence of knowledge uncertainties. Probabilistic Engineering Mechanics, 16, 331–340.

    Article  Google Scholar 

  • Montgomery, D. C. (2001). Design and analysis of experiments (5th ed.). MA: Wiley.

    Google Scholar 

  • Moses, F. (1969). Approach to structural reliability and optimization. An introduction to structural optimization. In M. Z. Cohn (Ed.), Solid mechanics division, University of Waterloo, Study No. 1, 81–120.

    Google Scholar 

  • Murakami, S. (2002). Setting the scene: CFD and symposium overview. Wind and Structures, 5(2–4), 83–88.

    Article  Google Scholar 

  • Muscolino, G., & Palmeri, A. (2005). Maximum response statistics of MDoF linear structures excited by non-stationary random processes. Computer Methods in Applied Mechanics and Engineering, 194, 1711–1737.

    Article  MATH  Google Scholar 

  • Newmark, N. M. (1959). A method of computation for structural dynamics. Journal of Engineering Mechanics Division, ASCE, 85, 67–94.

    Google Scholar 

  • Ooyama, K. (1969). Numerical simulation of the lifecycle of tropical cyclones. Journal of Atmospheric Sciences, 26, 3–40.

    Article  Google Scholar 

  • Pagnini, L. C., & Solari, G. (1998). Serviceability criteria for wind-induced acceleration and damping uncertainties. Journal of Wind Engineering and Industrial Aerodynamics, 74–76, 1067–1078.

    Article  Google Scholar 

  • Panagiotis, A. M., & Christopher, G. P. (2002). Weight minimization of displacement-constrained truss structures using a strain energy criterion. Computer Methods in Applied Mechanics and Engineering, 191, 2159–2177.

    Google Scholar 

  • Pantelides, C. P. (1990). Optimum design of actively controlled structures. Earthquake Engineering and Structural Dynamics, 19(4), 583–596.

    Article  Google Scholar 

  • Paola, M. D., & Sofi, A. (2002). Approximate solution of the Fokker–Planck–Kolmogorov equation. Probabilistic Engineering Mechanics, 17, 369–384.

    Article  Google Scholar 

  • Papadimitriou, C., & Lutes, L. D. (1996). Stochastic cumulant analysis of MDOF systems with polynomial-type nonlinearities. Probabilistic Engineering Mechanics, 11, 1–13.

    Article  Google Scholar 

  • Papadimitriou, C., Katafygiotis, L. S., & Lutes, L. D. (1999). Response cumulants of nonlinear systems subject to external and multiplicative excitations. Probabilistic Engineering Mechanics, 14, 149–160.

    Article  Google Scholar 

  • Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., & Joannopoulos, J. D. (1992). Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradient. Reviews of Modern Physics, 64(4), 1045–1097.

    Article  Google Scholar 

  • Pedersen, P., & Pedersen, N. L. (2005). An optimality criterion for shape optimization in eigenfrequency problems. Structural and multidisciplinary optimization, 29, 457–469.

    Article  Google Scholar 

  • Peterka, J. A. (1992). Improved extreme wind predictions in the United States. Journal of Wind Engineering and Industrial Aerodynamics, 41, 433–541.

    Article  Google Scholar 

  • Piterbarg, V. I. (1996). Asymptotic methods in the theory of Gaussian processes and fields. AMS, Translations of Mathematical Monographs, 148.

    Google Scholar 

  • Powell, M. J. D. (1964). An efficient method of finding the minimum of a function of several variables without calculating derivatives. The Computer Journal, 7, 155–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Prager, W., & Taylor, J. E. (1968). Problems of optimal structural design. Journal of Applied Mechanics, 35, 102–106.

    Article  MATH  Google Scholar 

  • Priestley, M. B. (1965). Evolutionary spectra and non-stationary processes. Journal of the Royal Statistical Society: Series B, 27, 204–237.

    MathSciNet  MATH  Google Scholar 

  • Proppe, C. (2003). Exact stationary probability density functions for non-linear systems under Poisson white noise excitation. International Journal of Non-Linear Mechanics, 38, 557–564.

    Article  MathSciNet  MATH  Google Scholar 

  • Proppe, C., Pradlwarter, H. J., & Schueller, G. I. (2003). Equivalent linearization and Monte Carlo simulation in stochastic dynamics. Probabilistic Engineering Mechanics, 18, 1–15.

    Article  Google Scholar 

  • Rackwitz, R. (2001). Reliability analysis: A review and some perspectives. Structural Safety, 23, 365–395.

    Article  Google Scholar 

  • Razani, R. (1965). The behaviour of the fully stressed design of structures and its relationship to minimum weight design. AIAA Journal, 3, 2262–2268.

    Article  Google Scholar 

  • Reinhold, T. (Ed.) (1982). Wind tunnel modeling for civil engineering applications. In International Workshop on Wind Tunnel Modeling Criteria and Techniques in Civil Engineering Applications, Gaithersburg, Maryland, U.S.A.: Cambridge University Press.

    Google Scholar 

  • Rice, S. O. (1945). Mathematical analysis of random noise. Bell System Technical Journal, 24, 46–156.

    Article  MathSciNet  MATH  Google Scholar 

  • Robert, J. A., & Hasofer, A. M. (1976). Level crossings for random fields. The Annals of Probability, 4(1), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, J. B., & Spanos, P. D. (1986). Stochastic averaging: an approximate method of solving random vibration problems. International Journal of Non-linear Mechanics, 21, 111–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, J. B., & Spanos, P. D. (1990). Random vibration and statistical linearization. New York: Wiley.

    MATH  Google Scholar 

  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 23(3), 470–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmit, L. A. (1960). Structural design by systematic synthesis. Proceedings of 2nd Conference on Electronic Computation, ASCE (pp. 105–122).

    Google Scholar 

  • Schueller, G. I. (2007). On the treatment of uncertainties in structural mechanics and analysis. Comupters and Structures, 85, 235–243.

    Article  Google Scholar 

  • Senthooran, S., Lee, D. D., & Parameswaran, S. (2004). A computational model to calculate the flow-induced pressure fluctuations on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 92, 1131–1145.

    Article  Google Scholar 

  • Shapiro, L. J. (1983). The asymmetric boundary layer flow under a translating hurricane. Journal of Atmospheric Sciences, 40(8), 1984–1988.

    Article  Google Scholar 

  • Shinozuka, M. (1983). Basic analysis of structural safety. Journal of Structural Engineering, 109, 721–740.

    Article  Google Scholar 

  • Shinozuka, M., & Jan, C. M. (1972). Digital simulation of random processes and its applications. Journal of Sound and Vibration, 25(1), 111–128.

    Article  Google Scholar 

  • Shinozuka, M., & Deodatis, G. (1997). Simulation of stochastic processes and fields. Probabilistic Engineering Mechanics, 12(4), 203–207.

    Google Scholar 

  • Simiu, E., & Heckert, N. A. (1998). Ultimate wind loads and directional effects in non-hurricane and hurricane-prone regions. Environmetrics, 9, 433–444.

    Article  Google Scholar 

  • Simiu, E., & Scanlan, R. H. (1996). Wind effects on structures: fundamentals and applications to design. New York: John Wiley.

    Google Scholar 

  • Smith, B. S., & Coull, A. (1991). Tall building structures: Analysis and design. John Wiley & Sons, INC.

    Google Scholar 

  • Socquet-Juglard, H., Dysthe, K., Trulsen, K., Krogstad, H., & Liu, J. (2005). Probability distributions of surface gravity waves during spectral changes. Journal of Fluid Mechanics, 542, 195–216.

    Article  MathSciNet  MATH  Google Scholar 

  • Solari, G. (1996). Evaluation and role of damping and periods for the calculation of structural response under wind loads. Journal of Wind Engineering and Industrial Aerodynamics, 59, 191–210.

    Article  Google Scholar 

  • Solari, G. (1997). Wind-excited response of structures with uncertain parameters. Probabilistic Engineering Mechanics, 12(2), 75–87.

    Article  Google Scholar 

  • Solari, G. (2002). The role of analytical methods for evaluating the wind-induced response of tructures. Journal of Wind Engineering and Industrial Aerodynamics, 90, 1453–1477.

    Article  Google Scholar 

  • Song, J., & Der Kiureghian, A. (2006). Joint first-passage probability and reliability of systems under stochastic excitation. Journal of Engineering Mechancis, 132(1), 65–77.

    Google Scholar 

  • Sousa, L. G., Cardoso, J. B., & Valido, A. J. (1997). Optimal cross-section and configuration design of elastic–plastic structures subject to dynamic cyclic loading. Structural Optimization, 13, 112–118.

    Article  Google Scholar 

  • Stathopoulos, T. (1997). Computational wind engineering: Past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, 67–68, 509–532.

    Article  Google Scholar 

  • Stathopoulos, T. (2002). The numerical wind tunnel for industrial aerodynamics: real or virtual in the new millennium? Wind and Structures, 5(2–4), 193–208.

    Article  Google Scholar 

  • Surahman, A., & Rojiani, K. B. (1983). Reliability based optimum design of concrete frames. Journal of Structural Engineering, 109(3), 741–757.

    Article  Google Scholar 

  • Tallin, A., & Ellingwood, B. (1985). Wind induced lateral-torsional motion of buildings. Journal of Structural Engineering, 111(10), 2197–2213.

    Article  Google Scholar 

  • Tamura, Y., Shimada, K., & Yokota, H. (1994). Estimation of structural damping of buildings. In Proceedings of the ASCE Structural Congress and lASS International, Symposium (Vol. 2, pp. 1012–1017). Atlanta, USA.

    Google Scholar 

  • Tamura, Y., & Suganuma, S. Y. (1996). Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds. Journal of Wind Engineering & Industrial Aerodynamics59(2), 115–130.

    Google Scholar 

  • Truman, K. Z., & Cheng, F. Y. (1997). How to optimize for earthquake loads. Guide to Structural Optimization, ASCE Manuals and Reports on Engineering Practice No., 90, 237–261.

    Google Scholar 

  • Tschanz, T., & Davenport, A. G. (1983). The base balance technique for the determination of dynamic wind loads. Journal of Wind Engineering and Industrial Aerodynamics, 13, 429–439.

    Article  Google Scholar 

  • Tseng, C. H., & Arora, J. S. (1989). Optimum design of systems for dynamics and controls using sequential quadratic programming. AIAA Journal, 27(12), 1793–1800.

    Google Scholar 

  • Tu, J., & Choi, K. K. (1999). A new study on reliability-based design optimization. Journal of Mechanical Design, 121(4), 557–564.

    Article  Google Scholar 

  • Tvedt, L. (1990). Distribution of quadratic forms in normal space-application to structural reliability. Journal of Engineering Mechanics, 116(6), 1183–1197.

    Article  Google Scholar 

  • Van Der Hoven, (1957). Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. Journal of Meteorology, AMS, 14, 160.

    Article  Google Scholar 

  • Vanmarcke, E. H. (1975). On the distribution of the First-passage time for normal stationary random processes. Journal of Applied Mechanics, 42, 215–220.

    Article  MATH  Google Scholar 

  • Venkayya, V. B., Khot, N. S., & Reddy, V. S. (1968). Optimization of structures based on the study of strain energy distribution. AFFDL-TR-68-150.

    Google Scholar 

  • Vickery, B. J. (1966). On the assessment of wind effects on elastic structures. Australian Civil Engineering Transactions, CE8, 183–192.

    Google Scholar 

  • Vickery, B. J., & Daly, A. (1984). Wind tunnel modelling as a means of predicting the response to vortex shedding. Engineering Structures, 6, 363–368.

    Article  Google Scholar 

  • Vickery, P. J., & Twisdale, L. A. (1995). Prediction of hurricane wind speeds in the United States. Journal of Structural Engineering, 121(11), 1691–1699.

    Article  Google Scholar 

  • Vickery, P. J., Skerlj, P. F., Steckley, A. C., & Twisdale, L. A. (2000). Hurricane wind field model for use in hurricane simulations. Journal of Structural Engineering, 126(10), 1203–1221.

    Article  Google Scholar 

  • Von Karman, T. (1948). Progress in the statistical theory of turbulence (pp. 530–539). Washington, DC: Proceedings of the National Academy of Sciences.

    MATH  Google Scholar 

  • Wang, B. P. (1991). Improved approximate methods for computing eigenvector derivatives in structural dynamics. AIAA Journal, 29, 1018–1020.

    Article  Google Scholar 

  • Arora, & Wang, Q. (2005). Review of formulations for structural and mechanical system optimization. Structural and Multidisciplinary Optimization, 30, 251–272.

    Google Scholar 

  • Wu, W. F., & Lin, Y. K. (1984). Cumulant-neglect closure for non-linear oscillators under random parametric and external excitations. International Journal of Non-Linear Mechanics, 19(4), 349–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, L., Gong, Y. L., & Grierson, D. E. (2006). Seismic design optimization of steel building frameworks. Journal of Structural Engineering, 132(2), 277–286.

    Article  Google Scholar 

  • Yang, C. Y. (1985). Random vibration of structures. Wiley, New York.

    Google Scholar 

  • Yip, D. Y. N., & Flay, R. G. J. (1995). A new force balance data analysis method for wind response predictions of tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 54(55), 457–471.

    Article  Google Scholar 

  • Youn, B. D., Choi, K. K., & Park, Y. H. (2003). Hybrid analysis method for reliability-based design optimization. Journal of Mechanical Design, 125, 221–232.

    Article  Google Scholar 

  • Youn, B. D., Choi, K. K., & Du, L. (2005). Adaptive probability analysis using an enhanced hybrid mean value method. Structural and Multidisciplinary Optimization, 29, 134–148.

    Article  Google Scholar 

  • Zhang, D. L., Liu, Y., & Yau, M. K. (2000). A multi-scale numerical study of hurricane Andrew, 1992: Part III: Dynamically induced vertical motion. Monthly Weather Review, 128, 3772–3788.

    Article  Google Scholar 

  • Zhu, W. Q. (1990). The exact stationary response solution of several classes of nonlinear systems to white noise parametric and/or external excitations. Applied Mathematics and mechanics, 11(2), 165–175.

    Google Scholar 

  • Zhu, W. Q., & Huang, Z. L. (2001). Exact stationary solutions of stochastically excited and dissipated partially integrable Hamiltonian systems. International Journal of Non-linear Mechanics, 36, 39–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Zou, X. K., & Chan, C. M. (2005). An optimal resizing technique for seismic drift design of concrete buildings subjected to response spectrum and time history loadings. Computers & Structures, 83(19–20), 1689–1704.

    Article  Google Scholar 

  • Zou, T., & Mahadevan, S. (2006). A direct decoupling approach for efficient reliability-based design optimization. Structural and Multidisciplinary Optimization, 31, 190–200.

    Article  Google Scholar 

  • Zuranski, J. A., & Jaspinska, B. (1996). Directional analysis of extreme wind speeds in Poland. Journal of Wind Engineering and Industrial Aerodynamics, 65, 13–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfeng Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Science Press and Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Huang, M. (2017). Overview on Performance-Based Engineering Under Multihazard Environments. In: High-Rise Buildings under Multi-Hazard Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-1744-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1744-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1743-8

  • Online ISBN: 978-981-10-1744-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics