Skip to main content

Biology of Neuroinflammation: A Common Denominator in Brain Pathologies

  • Chapter
  • First Online:

Abstract

Neuroinflammation is a common denominator of diverse neurological diseases. While acute inflammatory response is considered to be neuroprotective, chronic inflammation induces cascades of inflammatory reactions that leads to neurodegeneration. The harmful effect of chronic inflammation in modulating the course of disease has been well documented in a wide range of neurodegenerative disorders like Alzheimer’s disease, Huntington’s disease, Amyotrophic lateral sclerosis, etc., Overall goal of this review is to provide a broad description of the current state of knowledge of neuroinflammation associated with various acute and chronic neurological disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aisen PS, Davis KL, Berg JD et al (2000) A randomised controlled trial of prednisone in Alzheimer’s disease co-operative study. Neurology 54:588–593

    Article  CAS  PubMed  Google Scholar 

  • Akiyama H, Berger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan SM, Rothwell NJ (2003) Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci 358:1669–1677

    Google Scholar 

  • Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640

    Article  CAS  PubMed  Google Scholar 

  • Allan LE, Geraldine HP, Brundin P (2010) Cell transplantation in Parkinson’s disease: problems and perspectives. Curr Opin Neurol 23:1350

    Google Scholar 

  • Aloisi F (1999) The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv Exp Med Biol 468:123–133

    Article  CAS  PubMed  Google Scholar 

  • Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankeny DP, Popovich PG (2009) Mechanisms and implications of adaptive immune responses after traumatic spinal cord injury. Neuroscience 158:1112–1121

    Article  CAS  PubMed  Google Scholar 

  • Bard F, Cannon C, Barbour R et al (2000) Peripherally administered anti-bodies against amyloid beta-peptide enter the nervous system and reduce pathology in a mouse model of Alzheimer’s disease. Nat Med 6:916–919

    Article  CAS  PubMed  Google Scholar 

  • Barron KD (1995) The microglial cell: a historical review. J Neurosci 134:57–68

    Google Scholar 

  • Beard CM, Kokman E, Kurland LT (1991) Rheumatoid arthritis and susceptibility to Alzheimer’s disease. Lancet 337:1426

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation—mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 44:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Breitner JC, Gau BA, Welsh KA et al (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44:227–232

    Article  CAS  PubMed  Google Scholar 

  • Breitner JC, Welsh KA, Helms MJ et al (1995) Delayed onset of Alzheimer’s disease with non-steroidal anti-inflammatory and histamine H2 blocking drugs. Neurol Aging 16:523–530

    Google Scholar 

  • Carpentier P, Palmer T (2009) Immune influence on neural stem cell regulation and function. Neuron 64:79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hallenbeck JM, Ruetzlar C, Bol D et al (2003) Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischaemic brain injury and is associated with recruitment of inflammatory cell. J Cereb Blood Flow Metab 23:748–755

    Article  PubMed  Google Scholar 

  • Cuartero MI, Ballesteros I, Moraga A (2013) N2 neutrophils novel players in brain inflammation after stroke modulation by PPARr against rosiglita zone. Stroke 44:3498–3508

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C, Wilcockson DC, Campion S, Lunnon K (2005) Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 25:9275–9284

    Article  CAS  PubMed  Google Scholar 

  • Dandoy-Dron F, Guillo F, Benboudjema L, Deslys JP (1998) Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts. J Biol Chem 273:7691–7697

    Article  CAS  PubMed  Google Scholar 

  • De Mattos RB, Bales KR, Cummins DJ et al (2001) Peripheral anti-A beta antibody alters CNS and plasma A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855

    Article  Google Scholar 

  • Dikshit B, Irshad K, Madan E, Aggarwal N et al (2013) FAT1 acts as an upstream regulator of oncogene and inflammatory pathways, via PDCD4, in gliomas cells. Oncogene 32:3798–3808

    Article  CAS  PubMed  Google Scholar 

  • Dodel RC, Hampel H, Du Y (2003) Immunotherapy for Alzheimer’s disease. Lancet 2:215–220

    Article  CAS  PubMed  Google Scholar 

  • Doll DN, Barr TL, Simpkins JW (2014) Cytokines: their role in stroke and potential use as biomarkers and therapeutic targets. Aging Dis 5:294–306

    PubMed  PubMed Central  Google Scholar 

  • Dunn N, Mullee M, Perry VH, Holmes C (2005) Association between dementia and infectious disease: evidence from a case-control study. Alzheimer Dis Assoc Disord 19:91–94

    Article  PubMed  Google Scholar 

  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239

    Article  CAS  PubMed  Google Scholar 

  • El Khoury J, Toft M, Hickman SE, Means TK (2007) Ccr2 deficiency impairs microlgial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Article  PubMed  Google Scholar 

  • Engelhart MJ et al (2004) Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol 61:668–672

    Article  PubMed  Google Scholar 

  • Fishel MA, Watson GS, Montine TJ, Wang Q (2005) Hyperinsulinemia provokes synchronous increases in central inflammation and beta-amyloid in normal adults. Arch Neurol 62:1539–1544

    Article  PubMed  Google Scholar 

  • Gentleman SM, Leclercq PD, Moyes L, Graham DI et al (2004) Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 146:97–104

    Article  CAS  PubMed  Google Scholar 

  • Godoy MC, Tarelli R, Ferrari CC, Sarchi MI, Pitossi FJ (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131:1880–1894

    Article  PubMed Central  Google Scholar 

  • Griffin WS, Sheng JG, Roberts GW, Mrak RE (1995) Interleukin-1 expression in different plaque types in Alzheimer’s disease: significance in plaque evolution. J Neuropathol Exp Neurol 54:294–297

    Article  Google Scholar 

  • Guo Z, Cupples A, Kurz A (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54:1316–1323

    Article  CAS  PubMed  Google Scholar 

  • Hailer NP (2008) Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 84:211–233

    Article  CAS  PubMed  Google Scholar 

  • Harish G, Mahadevan A, Pruthi N, Sreelakshmi K et al (2015) Characterization of traumatic brain injury in human brains reveals distinct cellular and molecular changes in contusion and preicontusion. J Neurochem 134:156–172

    Article  CAS  PubMed  Google Scholar 

  • Henkel JS, Engelhard JI, Siklo’s L, Simpson EP (2004) Presence of dendritic cells, MCP-1 and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann Neurol 55:221–235

    Article  CAS  PubMed  Google Scholar 

  • Holmes C, El-Okl M, Williams AL, Cunningham C (2003) Systemic infection, interleukin 1beta, and cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:788–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmin S, Mathiesen T (1999) Long-term intracerebral inflammatory response after experimental focal brain injury in rat. NeuroReport 10:1889–1891

    Article  CAS  PubMed  Google Scholar 

  • Hoozemans JJ, O’Banion MK (2005) The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials on non-steroidal anti-inflammatory drugs. Curr Drug Targets CNS Neurol 4:307–315

    Article  CAS  Google Scholar 

  • Hoozemans JJ, Rozemuller AJM, Janssen I et al (2001) Cyclo-oxygenase expression in microglia and neurons in Alzheimer’s disease and control brains. Acta Neuropathol (Berl) 101:208

    Google Scholar 

  • Int’Veld BA, Ruitemberg A, Holfman A et al (2001) Nonsteroidal anti-inflammatory drugs and the risk of Alzheimer’s disease. N Engl Med 345:1515–1521

    Google Scholar 

  • Jenny NS, Tracy RP, Ogg MS, le Luong A et al (2002) In the elderly, interleukin-6 plasma levels and the -174G> C polymorphism are associated with the development of cardiovascular disease. Arterioscler Throm Vas Biol 22:2066–2071

    Article  CAS  Google Scholar 

  • Johnson VE, Stewart JE, Begbie FD, Trojanowiski JQ et al (2013) Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain 136:28–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:318–321

    Article  Google Scholar 

  • Kurth T, Gaziano JM, Berger K, Kase CS (2002) Body mass index and the risk of stroke in men. Arch Int Med 162:2557–2562

    Article  Google Scholar 

  • Landreth GE, Heneka MT (2001) Anti-inflamatory actions of peroxisome proliferator-activated receptor gamma agonists in Alzheimer’s disease. Neurobiol Aging 22:937–944

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Weindruch R, Prolla TA (2000) Gene expression profile of ageing brain in mice. Nat Genet 25:294–297

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Tharp WG, Maple RL, Nair S et al (2008) Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity 16:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C et al (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  CAS  PubMed  Google Scholar 

  • Lucin KM, Wyss-Conray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64:110–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lue LF, Brachova L, Civin H, Rogers J (1996) Inflammation Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropath Exp Neurol 55:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Lv Y-T, Zhang Y, Liu M et al (2013) Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med 11:196–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantovani S, Garbelli S, Pasin A, Alimonti D et al (2009) Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing inflammatory process. J Neuroimmunol 210:73–79

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Ohmori K, Fujiwara M (1992) Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system. J Neuroimmunl 37:23–33

    Article  CAS  Google Scholar 

  • Mc Geer PL, Mc Geer EG (2001a) Inflammation, autotoxicity and Alzheimer’s disease. Neurobiol Aging 22:799–809

    Article  CAS  Google Scholar 

  • Mc Geer PL, Mc Geer EG (2001b) Inflammation, autotoxicity and Alzheimer’s disease. Neurobiol Aging 22:799–809

    Article  CAS  Google Scholar 

  • Mc Geer PL, Mc Geer EG (2004) Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035:104–116

    Article  CAS  Google Scholar 

  • Mc Geer PL, Rogers J (1992) Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology 42:447–449

    Article  CAS  Google Scholar 

  • Mc Geer PL, Akiyama H, Itagaki S, Mc Geer EG (1989) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16:561–567

    Google Scholar 

  • Mc Geer PL, Schulzer M, Mc Geer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17-epidemiology studies. Neurology 47:425–432

    Google Scholar 

  • McColl BW, Rothwell NJ, Allan SM (2007) Systemic inflammatory stimulus potentiates the acute phase and CXC chemokine responses to experimental stroke and exacerbates brain damage via interleukin-1- and neutrophil-dependent mechanisms. J Neurosci 27:4403–4412

    Article  CAS  PubMed  Google Scholar 

  • McColl BW, Allan SM, Rothwell NJ (2009) Systemic infection, inflammation and acute ischemic stroke. Neuroscience 158:1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Miller G (2005) Neuroscience: the dark side of glia. Science 308:778–781

    Article  CAS  PubMed  Google Scholar 

  • Misiak B, Leszek J, Kiejna A (2012) Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease—the emerging role of systematic low-grade inflammation and adiposity. Brain Res Biol 89:144–149

    Article  CAS  Google Scholar 

  • Murray KN, Parry-Jones AR, Allan SM (2015) Interleukin-1 and acute brain injury. Front Cell Neurosci 9:1–17

    Google Scholar 

  • Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci. 25:313–319

    Article  CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmnchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Oka A, Takashima S (1997) Induction of cyclo-oxygeanse 2 in brains of patients with Down’s syndrome and dementia of Alzheimer’s type: specific localization in affected neurons and axons. Neuro Rep 8:161–164

    Google Scholar 

  • Palin K, Cunningham C, Forse P, Perry VH, Platt N (2008) Systemic inflammation switches the inflammatory cytokine profile in CNS Wallerian degeneration. Neurobiol Dis 30:19–29

    Article  CAS  PubMed  Google Scholar 

  • Panza F, Frisarde V, Cupurso C, Imbimbo BP et al (2010) Metabolic syndrome and cognitive impairment: current epidemiology and possible underlying mechanisms. J Alzheimer’s Dis 21:691–724

    Google Scholar 

  • Perry VH, Cunningham C, Holmes C (2007) Systematic infection and inflammation affect chronic neurodegeneration. Nat Rev/Immunol 7:161–167

    CAS  Google Scholar 

  • Pierce JE, Smith DH, Trojanowski JQ, McIntosh TK (1998) Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 87:359–369

    Article  CAS  PubMed  Google Scholar 

  • Plassman BL, Havlik RJ, Steffens DC, Helms MJ (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55:1158–1166

    Article  CAS  PubMed  Google Scholar 

  • Pluchino S, Zanoti L, Rossl B et al (2005) Neurosphere-derived multipotent precursors promote neuroprotective by immune-modulatory mechanisms. Nature 436:266–271

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y et al (2007) Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signalling proteins. Nat Med 13:1359–1362

    Article  CAS  PubMed  Google Scholar 

  • Rogers J, O’Barr S (1996) Inflammatory mediators in Alzheimer’s disease 1996 (Quoted by Akiyama et al 2000)

    Google Scholar 

  • Rogers J, Kirby SR, Hempelman D et al (1993) Clinical trial of indo-methacin in Alzheimer’s disease. Neurology 43:1609–1611

    Article  CAS  PubMed  Google Scholar 

  • Rother M, Erkinjuntti T, Roessner M et al (1998) Propentofylline in the treatment of Alzheimer’s disease and vascular dementia: a review of phase III trials. Dement Geriatr Cog Dis Ord 9:36–43

    Article  CAS  Google Scholar 

  • Sainetti SM, Ingrim DM, Talwalkar S, Geis GS (2000) Results of a double-blind, randomised, placebo-controlled study of celecoxib in treatment of progression of Alzheimer’s disease (Quoted by Eikelenboom et al 2002)

    Google Scholar 

  • Schenk D, Barbour R, Dunn W et al (1999) Immunization with amyloid-beta attenuates Alzheimer’s disease-like pathology in the PDA PP mouse. Nature 400:173–177

    Google Scholar 

  • Sen E (2011) Targeting inflammation—induced transcription factor activation: an open frontier for glioma therapy. Drug Discov Today 16:1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defences against unfolded proteins: a cell biologist thinks about neurodegenerative disease. Neuron 29:15–32

    Article  CAS  PubMed  Google Scholar 

  • Singh-rao SK (1999) Increased complement biosynthesis by microglia and complement activation on neurons in Huntington’s disease. Exp Neurol 159:362–376

    Article  CAS  Google Scholar 

  • Siniscalco D, Bradstreet JJ, Antonucci N (2013) Therapeutic role of hematopoietic stem cells in autism spectrum disorder-related inflammation. Front Immunol 4:1–6

    Article  CAS  Google Scholar 

  • Song WC, Sarrias MR, Lambris JD (2000) Complement and innate immunity. Immunopharmacology 49:187–198

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathology of the CNS. Prog Neurobiol 58:233–247

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (2005) Microglia and neuroprotection: implications for Alzheimer’s disease. Brain Res Rev 48:234–239

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ (2009) Microglia and neuroprotection: implication for Alzheimer’s disease. Brain Res Rev 48:234–239

    Article  Google Scholar 

  • Streit WJ, Walter SA, Pennel NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    Article  CAS  PubMed  Google Scholar 

  • Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212

    Article  PubMed  Google Scholar 

  • Streit WJ, Miller KR, Lopes KO, Njie E (2008) Microglial degeneration in the aging brain–bad news for neurons? Front Biosci 13:3423–3438

    Article  CAS  PubMed  Google Scholar 

  • Suk SH, Sacco RL, Boden-Albala B, Cheun JF (2003) Abdominal obesity and risk of ischemic stroke: the Northern Manhattan Stroke Study. Stroke 34:1586–1592

    Article  PubMed  Google Scholar 

  • Swardfager W, Lanctot K, Rothenberg L, Wong A et al (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiat 68:930–941

    Article  CAS  PubMed  Google Scholar 

  • Tandon PN (2007) Brain cells-recently unveiled secrets: their clinical significance. Neurol India 55:322–327

    Article  PubMed  Google Scholar 

  • Teismann P, Tieu K, Cohen O, Chot D-K et al (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18:121–129

    Article  PubMed  Google Scholar 

  • Terao S, Yilmaz G, Stokes KY, Ishikawa M et al (2008) Inflammatory and injury responses to ischemic stroke in obese mice. Stroke 39:943–950

    Article  PubMed  Google Scholar 

  • Tian L, Rauvala H, Gahmberg CG (2009) Neuronal regulation of immune responses in central nervous system. Trends Immunol 30:91–99

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778

    Article  CAS  PubMed  Google Scholar 

  • Van Gool WA, Weinstein HC, Scheltens PK, Walstra GJ (2001) Effect of hydrochloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised double-blind, placebo-controlled study. Lancet 358:455–460

    Article  PubMed  Google Scholar 

  • Van Himbergen TM, Beiser AS, Ai M, Seshadri S (2012) Biomarkers for insulin resistance and inflammation and the risk for all-cause dementia and alzheimer disease: results from the Framingham Heart Study. Arch Neurol 69:594–600

    Article  PubMed  Google Scholar 

  • Vargas DI, NAsclmbene C, Krishnan C (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  CAS  PubMed  Google Scholar 

  • Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24:321–331

    Article  PubMed  Google Scholar 

  • Villeda SA, Luo J, Mosher KI, Zhou B et al (2011) The ageing systematic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser M, Bouter LM, McQuillan GM et al (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282:2131–2135

    Article  CAS  PubMed  Google Scholar 

  • Walker LC, LeVine H (2000) The cerebral proteo-pathies—neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 21:83–95

    Article  CAS  PubMed  Google Scholar 

  • Walter S, Letiembre M, Liu Y, Heine H (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20:947–956

    Article  CAS  PubMed  Google Scholar 

  • Yatsuya H, Folsom AR, Yamagishi K, North KE et al (2010) Race and sex-specific associations of obesity measures with ischemic stroke incidence in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 41:417–425

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakash Narain Tandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tandon, P.N. (2016). Biology of Neuroinflammation: A Common Denominator in Brain Pathologies. In: Jana, N., Basu, A., Tandon, P. (eds) Inflammation: the Common Link in Brain Pathologies. Springer, Singapore. https://doi.org/10.1007/978-981-10-1711-7_1

Download citation

Publish with us

Policies and ethics