Skip to main content

Biodiversity Prospecting for Phytoremediation of Metals in the Environment

  • Chapter
  • First Online:
Approaches to Heavy Metal Tolerance in Plants

Abstract

Biodiversity prospecting would lead to the discovery of wild plants that could clean polluted environments of the world. This theme is at its infancy with a great anticipation for commercial. The flourishing monitoring methods for toxic metals in the environment are based on biosensors (microbe–metal interaction), i.e., gene- and protein-based biosensors. The fundamental aspects of microbe–plant stress responses to different doses of toxic metals together with breakthrough in biotechnology-based research innovations would successfully provide answers for application of biodiversity in advancement of phytoremediation technology. The appropriate plant selection vis-à-vis the phytoextraction is the key for bioprospecting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad JU, Goni MA (2010) Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ Monit Assess 166:347–357

    Article  CAS  PubMed  Google Scholar 

  • Aksmann A, Pokora W, Bascik-Remisiewicz A, Dettlaff-Pokora A, Wielgomas B, Dziadziusko M (2014) Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene. Ecotoxicol Environ Saf 110:31–40

    Article  CAS  PubMed  Google Scholar 

  • Armas T, Pinto AP, de Varennes A, Mourato MP, Martins LL, Gonçalves MLS, Mota AM (2015) Comparison of cadmium-induced oxidative stress in Brassica juncea in soil and hydroponic cultures. Plant Soil 388:294–305

    Article  Google Scholar 

  • Bani A, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulçe S (2009) Ni hyperaccumulation by Brassicaceae in serpentine soils of Albania and NW Greece. Northeast Nat 16(5):385–404

    Article  Google Scholar 

  • Barabasz A, Wilkowska A, Ruszczy A, Ska A, Bulska E, Hanikenne M (2012) Metal response of transgenic tomato plants expressing P(1B) -ATPase. Physiol Plant 145:315–331

    Article  CAS  PubMed  Google Scholar 

  • Basile A, Sorbo S, Aprile G, Conte B, Castaldo Cobianchi R (2008) Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environ Pollut 151(2):401–407

    Article  CAS  PubMed  Google Scholar 

  • Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F (2015) Antioxidant responses of annelids, Brassicaceae and fabaceae to pollutants: a review. Ecotoxicol Environ Saf 114:273–303

    Article  CAS  PubMed  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons, Inc, Toronto, p 303

    Google Scholar 

  • Bo L, Wang D, Li T, Li Y, Zhang G, Wang C (2015) Accumulation and risk assessment of heavy metals in water, sediments, and aquatic organisms in rural rivers in the Taihu Lake region. China Environ Sci Pollut Res 22:6721–6731

    Article  CAS  Google Scholar 

  • Capuana M (2011) Heavy metals and woody plants—biotechnologies for phytoremediation. Biogeosci Forestry 4:7–15

    Article  Google Scholar 

  • Chen BC, Lai HY, Juang KW (2012) Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicol Environ Saf 80:393–400

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Persoh D (2009) Multi-tasking phytochelatin synthases. Plant Sci 177:266–271

    Article  CAS  Google Scholar 

  • Cui S, Zhou Q, Wei S, Zhang W, Cao L, Ren L (2007) Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. J Hazard Mater 146:341–346

    Article  CAS  PubMed  Google Scholar 

  • Dan TV, Krishnaraj S, Saxena PK (2002) Cadmiumand nickel uptake and accumulation in scented geranium (Pelargonium sp. frensham). Water Air Soil Pollut 137:355–364

    Google Scholar 

  • Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A (2011) Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta 23:139–156

    Article  Google Scholar 

  • De Groot RS, Alkemade R, Braat LC, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. J Ecol Complex 7(3):260–27

    Article  Google Scholar 

  • Dipu S, Anju AK, Salom Gnana Thanga V (2011) Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist, 31(3):263–268

    Google Scholar 

  • Doronila AI (2012) Clean and green: plants as metal prospectors in the Philippines. Chem Aust 3:26–28

    Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  PubMed  Google Scholar 

  • Fernandez E, Rossini AJ (2006) The composition and relation-ships between trace element levels in inhalable atmospheric particles (PM10) and in leaves of Nerium oleander L. and Lantana camara L. Chemosphere 62:1665–1672

    Article  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Grcman H, Velikonja-Bolta S, Vodnik D, Kos B, Lestan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  CAS  Google Scholar 

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144(1):77–83

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Jena VS, Jena N, Davic N, Matic D, Radojevic SJS (2013) Assessment of heavy metal contents of green leafy vegetables. Croat J Food Sci Technol 5:53–60

    Google Scholar 

  • Harrison S, Rajakaruna N (2011) Serpentine: evolution and ecology in a model system. University of California Press, Berkely

    Google Scholar 

  • Hsiao KH, Kao PH, Hseu ZY (2007) Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine mine-tailings for phytoextraction. J Hazard Mat 148:366–376

    Article  CAS  Google Scholar 

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Huang GY, Wang YS, Sun CC, Dong JD, Sun ZX (2010) The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Oceanol Hydrobiol Stud 39(1):11–25

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8(6):921–928

    CAS  Google Scholar 

  • Jean SL, Bordas F, Bollinger JC (2012) Column leaching of chromium and nickel from a contaminated soil using EDTA and citric acid. Environ Pollut 164:175–181

    Article  Google Scholar 

  • Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Li JT, Liao B, Dai Z, Zhu R, Shu WS (2009) Phytoextraction of Cd-contaminated soil by carambola (Averrhoa carambola) in field trials. Chemosphere 76(9):1233–1239

    Article  CAS  PubMed  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579–579

    Article  CAS  PubMed  Google Scholar 

  • Mahdieh M, Yazdani M, Mahdieh S (2013) The high potential of Pelargonium roseum plant for phytoremediation of heavy metals. Environ Monit Assess 185(9):7877–7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mari SD, Gendre K, Pianelli L, Ouerdane LR (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    Article  CAS  PubMed  Google Scholar 

  • Marsili S, Mariotti M (2006) The European Habitat Directive and the conservation of the nature in the ophiolitic Areas. In: Fifth international conference on serpentine ecology, Abstract Book. University of Siena, Italy

    Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, pp 201–221

    Google Scholar 

  • Murakami M, Nakajima F, Furumai H (2008) The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere 70(11):2099–2109

    Article  CAS  PubMed  Google Scholar 

  • Neugschwandtner RW, Tlustos P, Komárek M, Száková J (2008) Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma 144(3–4):446–454

    Article  CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2004) Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology 13(7):637–646

    Article  CAS  PubMed  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci 5:235–236

    Article  CAS  PubMed  Google Scholar 

  • Pilon-smits EAH, Hwang S, Lytle CM, Zhu YL et al (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenite uptake, reduction, and tolerance. Plant Physiol 119(1):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. ManTech Environmental Research Services Corporation, Ada, pp 1–36

    Google Scholar 

  • Pociecha M, Lestan D (2010) Electrochemical EDTA recycling with sacrificial Al anode for remediation of Pb contaminated soil. Environ Pollut 158:2710–2715

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (2003a) Phytoremediation of metal-polluted ecosystems: hope for commercialization. Russ J Plant Physiol 50:764–780

    Article  Google Scholar 

  • Prasad MNV (2003b) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):0717–3458

    Article  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Article  Google Scholar 

  • Salomons W, Förstner U (2012) Metals in the hydrocycle. Springer Science & Business Media, Berlin/Heidelberg

    Google Scholar 

  • Shahid M, Austruy A, Echevarria G, Arshad M, Sanaullah M, Aslam M, Nadeem M, Nasim W, Dumat C (2014) EDTA-enhanced phytoremediation of heavy metals: a review. Soil Sediment Contam 23:389–416

    Article  CAS  Google Scholar 

  • Sikka R, Nayyar V (2012) Cadmium accumulation and its effects on uptake of micronutrients in Indian mustard [Brassica juncea (L.) czern.] grown in a loamy sand soil artificially contaminated with cadmium. Commun Soil Sci Plant Anal 43:672–688

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002) Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ Exptal Botany 47:271–280

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556

    Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161(2–3):808–814

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Yang W, Zhang J, Zhou L (2009) Cadmium accumulation and growth responses of a poplar (Populus deltoids × Populus nigra) in cadmium contaminated purple soil and alluvial soil. J Hazard Mater 177:268–273

    Google Scholar 

  • Yanai J, Zhao FJ, McGrath SP, Kosaki T (2006) Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139(1):167–175

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Liu E, Shen J (2015) The accumulation and potential ecological risk of heavy metals in microalgae from a eutrophic lake (Taihu Lake, China). Environ Sci Pollut Res 22:17123–17134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jan, S., Parray, J.A. (2016). Biodiversity Prospecting for Phytoremediation of Metals in the Environment. In: Approaches to Heavy Metal Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-1693-6_7

Download citation

Publish with us

Policies and ethics