Skip to main content

Concepts for Improving Phytoremediation by Plant Engineering

  • Chapter
  • First Online:
Approaches to Heavy Metal Tolerance in Plants
  • 771 Accesses

Abstract

Engineering plants with better metal tolerance and accumulation potential is imperative to emergent phytoremediators. Certain plants can hyperaccumulate metal ions that are lethal to nearly all organisms even at low dosages. This characteristic could be utilized for cleaning metal-polluted soils. Furthermore, the accretion of heavy metals by plants establishes both the micronutrient and the heavy metal concentration of our food chain. Intricate communications of transport and chelating processes manage the efficiency of metal uptake and storage. In current scenario, numerous fundamental steps have been recognized at the molecular level and facilitate us to commence transgenic advances to engineer the transition metal composition of plants. The utilization of genetic engineering to amend plants for metal uptake, transport, and sequestration may launch novel possibility for improving competence of phytoremediation. Preamble of genes governing chelation complexes and metal transporter can enhance metal uptake and sequestration. This results in transgenic plants with amplified detoxification and accumulation of heavy metals like cadmium, lead, mercury, arsenic, and selenium. An in-depth understanding pertaining to mechanisms of rhizosphere interaction, uptake, transport, and sequestration of metals in hyperaccumulator plants will guide us to designing new transgenic plants with enhanced remediation characteristics. As we will discover more genes associated with metal metabolism, assisted through the genome sequencing ventures, novel panorama will be announced for advancement of competent transgenic plant lines for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, Pamphilis CWD, Yüceer C (2012) Characterization of Poplar ZIP family members ZIP1.2 and ZNT1. J Plant Gene Transgen 3(1):1–13

    Google Scholar 

  • Ahmad P (2015) Plant metal interaction: emerging remediation techniques. Elsevier, Amsterdam

    Google Scholar 

  • Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS, … Duarte AC (2015) Jacks of metal/metalloid chelation trade in plants—an overview. Front Plant Sci 6:192. doi: 10.3389/fpls.2015.00192

  • Assuncao AGL, Herrero E, Lin YF (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baligarx VC (2012) Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Adv Agron 117:117

    Article  Google Scholar 

  • Barberon M, Zelazny E, Robert S, Conejero G, Curie C, Frim J, Vert G (2011) Monoubiquitin-dependent endocytosis of the iron-regulated transporter 1 (IRT1) transporter controls iron uptake in plants. Proc Nat Acad Sci USA 108(32):E450–E458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bashir K, Takahashi R, Hiromi N, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progress and prospects. Fron Plant Sci 4:15

    CAS  Google Scholar 

  • Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. TRENDS in Biotechnology 32(5):271–280

    Article  CAS  PubMed  Google Scholar 

  • Benjamin SR, de Lima F, Rathoure AK (2015) Genetically engineered microorganisms for bioremediation processes: GEMs for bioremediaton. In: Toxicity and waste management using bioremediation, vol 113. Information Resources Management Association, Hershey

    Google Scholar 

  • Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant and Soil 293(1–2):153–176

    Article  CAS  Google Scholar 

  • Cellier A, Francou C, Houot S, Ballini C, Gauquelin T, Baldy V (2012) Use of urban composts for the regeneration of a burnt Mediterranean soil: a laboratory approach. J Environ Man 95:S238–S244

    Article  CAS  Google Scholar 

  • Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B (2014) The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS One 9(10):e111379. doi:10.1371/journal.pone.0111379

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013a) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a PvACR3 transgenic approach. Environ Sci Technol 47(16):9355–9362

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Fujii Y, Yamaji N, Masuda S, Takemoto Y, Kamiya T, Ueno D (2013b) Mn tolerance in rice is mediated by MTP8. 1, a member of the cation diffusion facilitator family. J Exper Bot 64(14):4375–4387

    Article  CAS  Google Scholar 

  • Chuh KN, Pratt MR (2015) Chemical methods for the proteome-wide identification of post translationally modified proteins. Cur Opinion in Chem Bio 24:27–37

    Article  CAS  Google Scholar 

  • Claus J, Bohmann A, Chavarria-Krauser A (2013) Zinc uptake and radial transport in roots of Arabidopsis thaliana: a modelling approach to understand accumulation. Ann Bot 112:369–380

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53(1):159–182

    Article  CAS  PubMed  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Phys 144:1052–1065

    Article  CAS  Google Scholar 

  • Cruz BH, Díaz-Cruz JM, Ariño C, Esteban M (2005) Complexation of heavy metals by phytochelatins: voltammetric study of the binding of Cd2+ and Zn2+ ions by the phytochelatin (γ-Glu-Cys) 3Gly assisted by multivariate curve resolution. Environ Sci Technol 39(3):778–786

    Article  CAS  PubMed  Google Scholar 

  • Deniau AX, Pieper B, Ten Bookum WM, Lindhout P, Aarts MGM, Schat H (2006) QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescens. Theor Appl Gen 113(5):907–920

    Article  CAS  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the Rhizosphere. Trends Plant Sci 21:266–278

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li YJ, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Pilon-Smits EA, Meagher RB, Doty S (2012) Biotechnological approaches for phytoremediation. In: Plant biotechnology and agriculture. Elsevier, Amsterdam, pp 309–328

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist 179(2):318–333

    Article  CAS  PubMed  Google Scholar 

  • Du J, Yang JL, Li CH (2012) Advances in metallotionein studies in forest trees. Plant Omics 5(1):46

    CAS  Google Scholar 

  • Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23(2):97–114

    Article  CAS  PubMed  Google Scholar 

  • Ehrnstorfer IA, Geertsma ER, Pardon E, Steyaert J, Dutzler R (2014) Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struc Mole Bio 21(11):990–996

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122(3):657–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foucault Y, Leveque T, Xiong T, Schreck E, Austruy A, Shahid M, Dumat C (2013) Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Chemo 93(7):1430–1435

    Article  CAS  Google Scholar 

  • Fulekar MH, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8(4):529–535

    CAS  Google Scholar 

  • Georgiev MI, Agostini E, Ludwig-Müller J, Xu J (2012) Genetically transformed roots: from plant disease to biotechnological resource. Trends Biotechnol 30(10):528–537

    Article  CAS  PubMed  Google Scholar 

  • Grispen VM, Hakvoort HW, Bliek T, Verkleij JA, Schat H (2011) Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ Exp Bot 72(1):71–76

    Article  CAS  Google Scholar 

  • Guo J, Green BR, Maldonado MT (2015) Sequence analysis and gene expression of potential components of copper transport and homeostasis in Thalassiosira pseudonana. Protist 166(1):58–77

    Article  CAS  PubMed  Google Scholar 

  • Hassan Z, Aarts MG (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environmental and Experimental Botany 72(1):53–63

    Article  CAS  Google Scholar 

  • Ibañez SG, Paisio CE, Oller ALW, Talano MA, González PS, Medina MI, Agostini E (2015) Overview and new insights of genetically engineered plants for improving phytoremediation. In: Phytoremediation. Management of environmental contaminants, vol 1. Springer International Publishing, pp 99–113. doi:10.1007/978-3-319-10395-2_8

    Google Scholar 

  • Inouhe M, Sakuma Y, Chatterjee S, Datta S, Jagetiya BL, Voronina AV, … Gupta DK (2015) General roles of phytochelatins and other peptides in plant defense mechanisms against oxidative stress/primary and secondary damages induced by heavy metals. In: Reactive oxygen species and oxidative damage in plants under stress. Springer International Publishing, Cham, pp 219–245

    Google Scholar 

  • Iqbal M, Ahmad A, Ansari MKA, Qureshi MI, Aref IM, Khan P.R, … Hakeem KR (2014) Improving the phytoextraction capacity of plants to scavenge metal (loid)-contaminated sites. Environ Rev 23(1):44–65

    Google Scholar 

  • Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Nishizawa NK (2012) Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286

    Article  PubMed Central  PubMed  Google Scholar 

  • Jagtap UB, Bapat VA (2015) Genetic engineering of plants for heavy metal removal from soil. In: Heavy metal contamination of soils. Springer International Publishing, Cham, pp 433–470

    Google Scholar 

  • Jan S, Kamili AN, Parray JA, Bedi YS, Ahmad P (2016) Microclimatic variation in UV perception and related disparity in tropane and quinolizidine alkaloid composition of Atropa acuminata, Lupinus polyphyllus and Hyoscyamus niger. J Photochem Photobiol B Biol 161:230–235

    Article  CAS  Google Scholar 

  • Johnson AAT, Kyriacou B, Callahan DL (2011) Constitutive over expression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS One 6(9):24476

    Article  Google Scholar 

  • Khan N, Ryu KY, Choi JY, Nho EY, Habte G, Choi H, Kim KS (2015) Determination of toxic heavy metals and speciation of arsenic in seaweeds from South Korea. Food Chem 169:464–470

    Article  CAS  PubMed  Google Scholar 

  • King I (2011) The role of Zip Superfamily of metal transporters in chronic diseases, purification & characterization of a bacterial Zip Transporter: Zupt. Wayne State University theses. Paper 63

    Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27(6):799–810

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, … Pareek A (2012) Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol 12(1):107

    Google Scholar 

  • Kushwaha A, Rani R, Kumar S, Gautam A (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environmental Reviews 23(999):1–13

    Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotech 163(1):1–9

    Article  CAS  Google Scholar 

  • Lima AIG, Pereira SIA, Figueira EMDAP, Caldeira GCN, de Matos Caldeira HDQ (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environmental and experimental botany 55(1):149–162

    Article  CAS  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81(4–5):507–522

    Article  CAS  PubMed  Google Scholar 

  • Lisec J, Meyer RC, Steinfath M, Redestig H, Becher M, Witucka‐Wall H, Willmitzer L (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. The Plant J 53(6):960–972

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Shang W, Zhang X, Zhu Y, Yu K (2014) Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species. J Hazard Mat 267:136–141

    Article  CAS  Google Scholar 

  • Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. 367: 507–519

    Google Scholar 

  • Ma JF, Yamaji N (2015) A cooperated system of silicon transport in plants. Trends Plant Sci 20(7):435–42

    Google Scholar 

  • Macek T, Novakova M, Kotrba P, Viktorova J, Lovecká P, Fiser J, … Mackova M (2012) 23 genetically modified plants designed for phytoremediation of toxic organic and inorganic contaminants. In: Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 415.

    Google Scholar 

  • Malagoli M, Schiavon M, dall’Acqua S, Pilon-Smits EA (2015) Effects of selenium biofortification on crop nutritional quality. Front Plant Sci 6:280

    Google Scholar 

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, … Salcedo-Sora E (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Nat Acad Sci 107(5):2331–2336

    Google Scholar 

  • Meharg AA (2005) Mechanisms of plant resistance to metal and metalloid ions and potential biotechnological applications. In: Root physiology: from gene to function. Springer, Dordrecht, pp 163–174

    Google Scholar 

  • Mehes-Smith M, Nkongolo K, Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. In: Environmental change and sustainability. InTech, ISBN, pp 978–953

    Google Scholar 

  • Mendoza‐Cózatl DG, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol‐peptides in the long‐distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54(2):249–259

    Article  PubMed Central  PubMed  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exper Bot 64(1):369–381

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A et al (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy KL, Manceau A, Gasper JD, Ryan JN, Aiken GR (2011) Metallothionein-like multinuclear clusters of mercury (II) and sulfur in peat. Environ Sci Technol 45(17):7298–7306

    Article  CAS  PubMed  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim et Biophy Acta (BBA)-Mol Cell Res 1763(7):609–620

    Article  CAS  Google Scholar 

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):73–86

    Article  PubMed  Google Scholar 

  • Öztürk M, Ashraf M, Aksoy A, Ahmad MSA, Hakeem KR (2016) Plants, pollutants and remediation. Springer, Dordrecht

    Google Scholar 

  • Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J, … Yao Q (2014) Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 26:100–110

    Google Scholar 

  • Pilon-Smits EAH (2013) Engineering plant selenium accumulation: potential uses and ecological impacts. In: Selenium in the environment and human health. CRC Press, Boca Raton, pp 217

    Google Scholar 

  • Pilon-Smits EAH, Elizabeth A (2015) Selenium in plants. In: Progress in botany. Springer International Publishing, Berlin/New York, pp 93–107

    Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Banuelos GS, Parker DR (2014) Uptake, metabolism, and volatilization of selenium by terrestrial plants. In: Salinity and drainage in San Joaquin Valley, California. Springer, Dordrecht, 147–164

    Google Scholar 

  • Pinto AP, de Varennes A, Fonseca R, Teixeira DM (2014) Phytoremediation of soils contaminated with heavy metals. Phytoremediation: Management of Environmental Contaminants 1:133

    Google Scholar 

  • Pivato M, Fabrega-Prats M, Masi A (2014) Low-molecular-weight thiols in plants: functional and analytical implications. Arch Biochem Biophys 560:83–99

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69

    Article  CAS  PubMed  Google Scholar 

  • Prévéral S, Gayet L, Moldes C, Hoffmann J, Mounicou S, Gruet A, … Forestier C (2009) A common highly conserved cadmium detoxification mechanism from bacteria to humans heavy metal tolerance conferred by the ATP-binding cassette (ABC) transporter SpHMT1 requires glutathione but not metal-chelating phytochelatin peptides. J Biol Chem 284(8):4936–4943

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Renault H, Bassard JE, Hamberger B, Werck-Reichhart D (2014) Cytochrome P450-mediated metabolic engineering: current progress and future challenges. Curr Opin Plant Biol 19:27–34

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Johnston EJ, Bruce NC (2015) Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants—a viable technology? J Exp Bot 66(21):6519–6533

    Google Scholar 

  • Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Cur Opin Biotech 32:179–185

    Article  CAS  Google Scholar 

  • Sarangi BK, Dash T, Pandey RA (2010) Engineering phytoremediation potentiality of plants through hyperaccumulation in plant biomass-with reference to arsenic and chromium. The Journal of Plant Science Research 26(2):113

    Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB (2011) The bio-cassava plus program: biofortification of cassava for Sub-Saharan Africa. Annu Rev Plant Physiol Plant Mol Biol 62:251–272

    Article  CAS  Google Scholar 

  • Seregin IV, Erlikh NT, Kozhevnikova AD (2014) Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens. Rus J Plant Phys 61(2):204–214

    Article  CAS  Google Scholar 

  • Seth CS, Remans T, Keunen E, Jozefczak M, Gielen H, Opdenakker K, … Cuypers A (2012) Phytoextraction of toxic metals: a central role for glutathione. Plant Cell Environ 35(2):334–346

    Google Scholar 

  • Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Trends and novel strategies for enhancing lipid accumulation and quality in microalgae. Renew Sustain Energy Rev 55:1–16

    Article  CAS  Google Scholar 

  • Soric R, Leden can T, Zdunic Z et al (2012) Quantitative trait loci for metal accumulation in maize leaf. Maydica 56:323–327

    Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62:4843–4850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012) The OsHMA2 transporter is involved in root‐to‐shoot translocation of Zn and Cd in rice. Plant Cell Environ 35(11):1948–1957

    Article  CAS  PubMed  Google Scholar 

  • Tamayo E, Gomez-Gallego T, Azcon-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Fron Plant Sci 5:547

    Google Scholar 

  • Tan S, Han R, Li P, Yang G, Li S, Zhang P, Wang WB, Zhao WZ, Yin LP (2015) Over-expression of the MxIRT1 gene increases iron and zinc content in rice seeds. Trans Res 24:109–122

    Article  CAS  Google Scholar 

  • Tomar PR, Dixit AR, Jaiwal PK, Dhankher OP (2015) Engineered plants for heavy metals and metalloids tolerance. In: Genetic manipulation in plants for mitigation of climate change. Springer, New Delhi, pp 143–168

    Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9(1):7–9

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2013) The alphabet of intrinsic disorder: II. various roles of glutamic acid in ordered and intrinsically disordered proteins. Intrin Dis Prot 1(1):e24684

    Google Scholar 

  • Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338

    Article  CAS  PubMed  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal contaminated land: a review. Environ Chemistry Lett 8:1–17

    Article  CAS  Google Scholar 

  • Wu Z, Banuelos GS, Lin ZQ, Liu Y, Yuan L, Yin X, Li M (2015) Biofortification and phytoremediation of selenium in China. Front Plant Sci 6:136

    PubMed Central  PubMed  Google Scholar 

  • Xie P, Hao X, Herzberg M, Luo Y. Nies DH, Wei G (2015) Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. J Environ Sci 27:179–187.

    Google Scholar 

  • Xu N, Qian K, Dong Y, Chen Y, Yu Q, Zhang B, Li M (2014) Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Res Microbio 165(3):252–261

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany 76(2):167–179

    Article  CAS  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19(8):1574–1588

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Li X, Chen J, Tam NFY (2015) Combined toxicity of cadmium and copper in Avicennia marina seedlings and the regulation of exogenous jasmonic acid. Ecotoxic Environ Saf 113:124–132

    Article  CAS  Google Scholar 

  • Yang T, Chen ML, Wang JH (2015) Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trend Anal Chem 66:90–102

    Google Scholar 

  • Yu P, Yuan J, Zhang H, Deng X, Ma M, Zhang H (2016) Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting. J Hazard Mater 302:275–285

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Zhu Y, Lin ZQ, Banuelos G, Li W (2013) A novel selenocystine-accumulating plant in selenium-mine drainage area in Enshi, China. PLoS One 8:65615

    Article  Google Scholar 

  • Zhang Y et al (2013) Enhanced phytoremediation of mixed heavy metal (mercury)–organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 260:1100–1107

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Wang RC, Lu XC, Lu JJ, Li J, Hu H (2012) Tolerance and biosorption of heavy metals by Cupriavidus metallidurans strain XXKD-1 isolated from a subsurface laneway in the Qixiashan Pb-Zn Sulfide Minery in Eastern China. Geomicro J 29(3):274–286

    Article  CAS  Google Scholar 

  • Zhao C, Xu J, Li Q, Li S, Wang P, Xiang F (2014) Cloning and characterization of a Phragmites australis phytochelatin synthase (PaPCS) and achieving Cd tolerance in tall fescue. PLoS One 9(8):103771

    Article  Google Scholar 

  • Zhou GK, Xu YF, Liu JY (2005) Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol 162(6):686–696

    Article  CAS  PubMed  Google Scholar 

  • Zhou YH, Xue M, Yang ZY, Gong YL, Yuan JG, Zhou CY et al (2014) High cadmium pollution risk on vegetable amaranth and a selection for pollution-safe cultivars to lower the risk. Front Environ Sci Eng 7:219–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jan, S., Parray, J.A. (2016). Concepts for Improving Phytoremediation by Plant Engineering. In: Approaches to Heavy Metal Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-10-1693-6_6

Download citation

Publish with us

Policies and ethics