Skip to main content

Micro/Nano Material-Based Biosensors

  • Chapter
  • First Online:
Book cover Micro/Nano Cell and Molecular Sensors
  • 653 Accesses

Abstract

Novel nanomaterial for use in bioassay applications represents a rapid advancing field. Various kinds of nanomaterial have been investigated to determine their properties and possible applications in biosensor. The nanomaterial’s ultrafine grain, high-concentration grain boundary and the adjacent condition of interfacial atoms determine their specific performance which was obviously different from amorphous, normal polycrystal and monocrystal. The common properties of micro/nano material contain volume effect, also known as small size effect, surface effect, quantum size effect, macroscopic quantum tunnel effect, and dielectric confinement effect. Besides, different nanomaterials also have their unique characteristics. Because of these extraordinary effects and properties, nanomaterial shows incredible macroscopic physical properties, which lay a broad prospect for its application. Biosensor is a kind of special sensor which consists of biomolecule recognition element and all kinds of physical or chemical transduces. They are often applied to analyze and detect living and chemical matter with high specificity and accuracy and low cost. Biosensors including electrochemical biosensors, optical biosensor, piezoelectric sensor, and FET-biosensor have got very great developments with the use of micro/nano material. The structures, properties, and applications in biosensors of several main groups, including metal nanomaterial, carbon nanomaterial, semiconductor material, magnetic nanomaterial, etc., are studied in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Updike S, Hicks G. The enzyme electrode. Nature. 1967;214:986–8.

    Article  CAS  PubMed  Google Scholar 

  2. Mohanty SP, Kougianos E. Biosensors: a tutorial review. Potentials IEEE. 2006;25(2):35–40.

    Article  Google Scholar 

  3. Higson SP, Reddy SM, Vadgama P. Enzyme and other biosensors: evolution of a technology. Eng Sci Educ J. 1994;3(1):41–8.

    Article  Google Scholar 

  4. Fraser D. Glucose biosensors: the sweet smell of success. Med Device Technol. 1994;5:44–7.

    Google Scholar 

  5. Cullum BM, Griffin GD, Miller GH, Vo-Dinh T. Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem. 2000;277(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  6. Haruyama T. Micro-and nanobiotechnology for biosensing cellular responses. Adv Drug Deliv Rev. 2003;55(3):393–401.

    Article  CAS  PubMed  Google Scholar 

  7. Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev. 2011;40(1):233–45.

    Article  CAS  PubMed  Google Scholar 

  8. Guo S, Wang E. Noble metal nanomaterials: controllable synthesis and application in fuel cells and analytical sensors. Nano Today. 2011;6(3):240–64.

    Article  CAS  Google Scholar 

  9. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev. 2005;105(4):1025–102.

    Article  CAS  PubMed  Google Scholar 

  10. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41(12):1578–86.

    Article  CAS  PubMed  Google Scholar 

  11. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed. 2010;49(19):3280–94.

    Article  CAS  Google Scholar 

  12. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.

    Article  CAS  Google Scholar 

  13. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857–70.

    Article  CAS  PubMed  Google Scholar 

  14. Huang X-J, Choi Y-K. Chemical sensors based on nanostructured materials. Sensors Actuators B Chem. 2007;122(2):659–71.

    Article  CAS  Google Scholar 

  15. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002;297(5586):1536–40.

    Article  CAS  PubMed  Google Scholar 

  16. Nam J-M, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science. 2003;301(5641):1884–6.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C. Aptamer‐based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small. 2010;6(2):201–4.

    Article  CAS  PubMed  Google Scholar 

  18. Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2(3):107–18.

    Article  CAS  Google Scholar 

  19. Link S, El-Sayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem. 2003;54(1):331–66.

    Article  CAS  PubMed  Google Scholar 

  20. Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995.

    Book  Google Scholar 

  21. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev. 2006;35(3):209–17.

    Article  CAS  PubMed  Google Scholar 

  22. Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev. 2011;40(1):44–56.

    Article  CAS  PubMed  Google Scholar 

  23. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79.

    Article  CAS  PubMed  Google Scholar 

  24. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  PubMed  Google Scholar 

  25. Ruoff R, Beach D, Cuomo J, McGuire T, Whetten R, Diederich F. Confirmation of a vanishingly small ring-current magnetic susceptibility of icosahedral buckminsterfullerene. J Phys Chem. 1991;95(9):3457–9.

    Article  CAS  Google Scholar 

  26. Hebard A, Rosseinky M, Haddon R, Murphy D, Glarum S, Palstra T, Ramirez A, Karton A. Potassium-doped c60. Nature. 1991;350:600–1.

    Article  CAS  Google Scholar 

  27. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183–91.

    Article  CAS  PubMed  Google Scholar 

  28. Neto AC, Guinea F, Peres N, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81(1):109.

    Article  CAS  Google Scholar 

  29. Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143(1):47–57.

    Article  CAS  Google Scholar 

  30. Tombros N, Jozsa C, Popinciuc M, Jonkman HT, Van Wees BJ. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature. 2007;448(7153):571–4.

    Article  CAS  PubMed  Google Scholar 

  31. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–8.

    Article  CAS  PubMed  Google Scholar 

  32. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.

    Article  CAS  PubMed  Google Scholar 

  33. Pereira VM, Neto AC, Peres N. Tight-binding approach to uniaxial strain in graphene. Phys Rev B. 2009;80(4):045401.

    Article  CAS  Google Scholar 

  34. Booth TJ, Blake P, Nair RR, Jiang D, Hill EW, Bangert U, Bleloch A, Gass M, Novoselov KS, Katsnelson MI. Macroscopic graphene membranes and their extraordinary stiffness. Nano Lett. 2008;8(8):2442–6.

    Article  CAS  PubMed  Google Scholar 

  35. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008;8(8):2458–62.

    Article  CAS  PubMed  Google Scholar 

  36. Leslie-Pelecky DL, Rieke RD. Magnetic properties of nanostructured materials. Chem Mater. 1996;8(8):1770–83.

    Article  CAS  Google Scholar 

  37. Woo K, Hong J, Choi S, Lee H-W, Ahn J-P, Kim CS, Lee SW. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater. 2004;16(14):2814–8.

    Article  CAS  Google Scholar 

  38. Dias A, Hussain A, Marcos A, Roque A. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv. 2011;29(1):142–55.

    Article  CAS  PubMed  Google Scholar 

  39. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science. 2003;299(5614):1877–81.

    Article  CAS  PubMed  Google Scholar 

  40. Patolsky F, Weizmann Y, Willner I. Long‐range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed. 2004;43(16):2113–7.

    Article  CAS  Google Scholar 

  41. Zhao W, Xu J-J, Chen H-Y. Extended-range glucose biosensor via layer-by-layer assembly incorporating gold nanoparticles. Front Biosci. 2005;10:1060–9.

    Article  CAS  PubMed  Google Scholar 

  42. Zong S, Cao Y, Zhou Y, Ju H. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosens Bioelectron. 2007;22(8):1776–82.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao J, Zhu X, Li T, Li G. Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c. Analyst. 2008;133(9):1242–5.

    Article  CAS  PubMed  Google Scholar 

  44. Pandey P, Upadhyay S. Bioelectrochemistry of glucose oxidase immobilized on ferrocene encapsulated ormosil modified electrode. Sensors Actuators B Chem. 2001;76(1):193–8.

    Article  CAS  Google Scholar 

  45. RetnaáRaj C, KumaráJena B. Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network, Chem Commun. 2005, (15):2005–2007.

    Google Scholar 

  46. Welch C, Banks C, Simm A, Compton R. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem. 2005;382(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  47. Karam P, Halaoui LI. Sensing of H2O2 at low surface density assemblies of Pt nanoparticles in polyelectrolyte. Anal Chem. 2008;80(14):5441–8.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang M, Smith A, Gorski W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem. 2004;76(17):5045–50.

    Article  CAS  PubMed  Google Scholar 

  49. Luo X-L, Xu J-J, Wang J-L, Chen H-Y. Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chem Commun. 2005;16:2169–71.

    Article  CAS  Google Scholar 

  50. Luo X-L, Xu J-J, Du Y, Chen H-Y. A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Anal Biochem. 2004;334(2):284–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhao W, Sun S-X, Xu J-J, Chen H-Y, Cao X-J, Guan X-H. Electrochemical identification of the property of peripheral nerve fiber based on a biocompatible polymer film via in situ incorporating gold nanoparticles. Anal Chem. 2008;80(10):3769–76.

    Article  CAS  PubMed  Google Scholar 

  52. Chen X, Wang Y, Zhou J, Yan W, Li X, Zhu J-J. Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem. 2008;80(6):2133–40.

    Article  CAS  PubMed  Google Scholar 

  53. Ding L, Hao C, Xue Y, Ju H. A bio-inspired support of gold nanoparticles-chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules. 2007;8(4):1341–6.

    Article  CAS  PubMed  Google Scholar 

  54. He P, Hu N. Electrocatalytic properties of heme proteins in layer‐by‐layer films assembled with SiO2 nanoparticles. Electroanalysis. 2004;16(13‐14):1122–31.

    Article  CAS  Google Scholar 

  55. He P, Hu N, Rusling JF. Driving forces for layer-by-layer self-assembly of films of SiO2 nanoparticles and heme proteins. Langmuir. 2004;20(3):722–9.

    Article  CAS  PubMed  Google Scholar 

  56. Luo X-L, Xu J-J, Zhao W, Chen H-Y. Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sensors Actuators B Chem. 2004;97(2):249–55.

    Article  CAS  Google Scholar 

  57. Dequaire M, Degrand C, Limoges B. An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem. 2000;72(22):5521–8.

    Article  CAS  PubMed  Google Scholar 

  58. Dai Z, Kawde A-N, Xiang Y, La Belle JT, Gerlach J, Bhavanandan VP, Joshi L, Wang J. Nanoparticle-based sensing of glycan-lectin interactions. J Am Chem Soc. 2006;128(31):10018–9.

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Liu G, Merkoçi A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc. 2003;125(11):3214–5.

    Article  CAS  PubMed  Google Scholar 

  60. Ding L, Cheng W, Wang X, Ding S, Ju H. Carbohydrate monolayer strategy for electrochemical assay of cell surface carbohydrate. J Am Chem Soc. 2008;130(23):7224–5.

    Article  CAS  PubMed  Google Scholar 

  61. Xu J-J, Zhao W, Luo X-L, Chen H-Y. A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem Commun. 2005;6:792–4.

    Article  CAS  Google Scholar 

  62. Luo X-L, Xu J-J, Zhao W, Chen H-Y. Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO2 nanoparticles. Anal Chim Acta. 2004;512(1):57–61.

    Article  CAS  Google Scholar 

  63. Xu J-J, Luo X-L, Du Y, Chen H-Y. Application of MnO2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors. Electrochem Commun. 2004;6(11):1169–73.

    Article  CAS  Google Scholar 

  64. Bai Y-H, Du Y, Xu J-J, Chen H-Y. Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem Commun. 2007;9(10):2611–6.

    Article  CAS  Google Scholar 

  65. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–9.

    Article  CAS  PubMed  Google Scholar 

  66. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–81.

    Article  CAS  PubMed  Google Scholar 

  67. Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev. 2005;105(4):1547–62.

    Article  CAS  PubMed  Google Scholar 

  68. Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BB, Heeger AJ. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Natl Acad Sci. 2010;107:10837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102–6.

    Article  CAS  PubMed  Google Scholar 

  70. Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A. 2004;101(39):14036–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thanh NTK, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem. 2002;74(7):1624–8.

    Article  CAS  PubMed  Google Scholar 

  72. Huang H, He C, Zeng Y, Xia X, Yu X, Yi P, Chen Z. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance. Biosens Bioelectron. 2009;24(7):2255–9.

    Article  CAS  PubMed  Google Scholar 

  73. Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, Du J, Zhou Y, Zhan L. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens Bioelectron. 2010;26(2):404–10.

    Article  PubMed  CAS  Google Scholar 

  74. Parab HJ, Jung C, Lee J-H, Park HG. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron. 2010;26(2):667–73.

    Article  CAS  PubMed  Google Scholar 

  75. John H. Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem Commun. 2005;31:3924–6.

    Google Scholar 

  76. Gou X-C, Liu J, Zhang H-L. Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal Chim Acta. 2010;668(2):208–14.

    Article  CAS  PubMed  Google Scholar 

  77. Qian X, Zhou X, Nie S. Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc. 2008;130(45):14934–5.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Driskell JD, Lipert RJ, Porter MD. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. J Phys Chem B. 2006;110(35):17444–51.

    Article  CAS  PubMed  Google Scholar 

  79. Klimov V, Mikhailovsky A, Xu S, Malko A, Hollingsworth J, Leatherdale C, Eisler H-J, Bawendi M. Optical gain and stimulated emission in nanocrystal quantum dots. Science. 2000;290(5490):314–7.

    Article  CAS  PubMed  Google Scholar 

  80. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998;281(5385):2013–6.

    Article  CAS  PubMed  Google Scholar 

  81. Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP. Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc. 2002;124(22):6378–82.

    Article  CAS  PubMed  Google Scholar 

  82. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem. 2004;76(3):684–8.

    Article  CAS  PubMed  Google Scholar 

  83. Mitchell GP, Mirkin CA, Letsinger RL. Programmed assembly of DNA functionalized quantum dots. J Am Chem Soc. 1999;121(35):8122–3.

    Article  CAS  Google Scholar 

  84. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001;19(7):631–5.

    Article  CAS  PubMed  Google Scholar 

  85. Patolsky F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I. Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. J Am Chem Soc. 2003;125(46):13918–9.

    Article  CAS  PubMed  Google Scholar 

  86. Swathi R, Sebastian K. Distance dependence of fluorescence resonance energy transfer. J Chem Sci. 2009;121(5):777–87.

    Article  CAS  Google Scholar 

  87. Swathi R, Sebastian K. Excitation energy transfer from a fluorophore to single-walled carbon nanotubes. J Chem Phys. 2010;132(10):104502.

    Article  CAS  PubMed  Google Scholar 

  88. Wang S, Humphreys ES, Chung S-Y, Delduco DF, Lustig SR, Wang H, Parker KN, Rizzo NW, Subramoney S, Chiang Y-M. Peptides with selective affinity for carbon nanotubes. Nat Mater. 2003;2(3):196–200.

    Article  PubMed  CAS  Google Scholar 

  89. Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG. DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater. 2003;2(5):338–42.

    Article  CAS  PubMed  Google Scholar 

  90. Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc. 2008;130(26):8351–8.

    Article  CAS  PubMed  Google Scholar 

  91. Sutton DJ, Tchounwou PB, Ninashvili N, Shen E. Mercury induces cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2) cells. Int J Mol Sci. 2002;3(9):965–84.

    Article  CAS  Google Scholar 

  92. Li F, Huang Y, Yang Q, Zhong Z, Li D, Wang L, Song S, Fan C. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale. 2010;2(6):1021–6.

    Article  CAS  PubMed  Google Scholar 

  93. Dong H, Gao W, Yan F, Ji H, Ju H. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem. 2010;82(13):5511–7.

    Article  CAS  PubMed  Google Scholar 

  94. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN. A graphene platform for sensing biomolecules. Angew Chem. 2009;121(26):4879–81.

    Article  Google Scholar 

  95. Jhaveri SD, Kirby R, Conrad R, Maglott EJ, Bowser M, Kennedy RT, Glick G, Ellington AD. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc. 2000;122(11):2469–73.

    Article  CAS  Google Scholar 

  96. Chang H, Tang L, Wang Y, Jiang J, Li J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem. 2010;82(6):2341–6.

    Article  CAS  PubMed  Google Scholar 

  97. Wen Y, Xing F, He S, Song S, Wang L, Long Y, Li D, Fan C. A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun. 2010;46(15):2596–8.

    Article  CAS  Google Scholar 

  98. Curie J, Curie P. An oscillating quartz crystal mass detector. Rendu. 1880;91:294–7.

    Google Scholar 

  99. Wang H, Wang C, Lei C, Wu Z, Shen G, Yu R. A novel biosensing interfacial design produced by assembling nano-Au particles on amine-terminated plasma-polymerized films. Anal Bioanal Chem. 2003;377(4):632–8.

    Article  CAS  PubMed  Google Scholar 

  100. Jin XY, Jin XF, Ding YJ, Jiang JH, Shen GL, Yu RQ. A piezoelectric immunosensor based on agglutination reaction with amplification of silica nanoparticles. Chin J Chem. 2008;26(12):2191–6.

    Article  CAS  Google Scholar 

  101. Wang H, Zhang Y, Yan B, Liu L, Wang S, Shen G, Yu R. Rapid, simple, and sensitive immunoagglutination assay with SiO2 particles and quartz crystal microbalance for quantifying Schistosoma japonicum antibodies. Clin Chem. 2006;52(11):2065–71.

    Article  CAS  PubMed  Google Scholar 

  102. Kim TH, Lee SH, Lee J, Song HS, Oh EH, Park TH, Hong S. Single‐carbon‐atomic‐resolution detection of odorant molecules using a human olfactory receptor‐based bioelectronic nose. Adv Mater. 2009;21(1):91–4.

    Article  CAS  Google Scholar 

  103. Star A, Tu E, Niemann J, Gabriel J-CP, Joiner CS, Valcke C. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A. 2006;103(4):921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Goldsmith BR, Coroneus JG, Khalap VR, Kane AA, Weiss GA, Collins PG. Conductance-controlled point functionalization of single-walled carbon nanotubes. Science. 2007;315(5808):77–81.

    Article  CAS  PubMed  Google Scholar 

  105. Sorgenfrei S, Chiu C-y, Gonzalez Jr RL, Yu Y-J, Kim P, Nuckolls C, Shepard KL. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat Nanotechnol. 2011;6(2):126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8(12):4469–76.

    Article  CAS  PubMed  Google Scholar 

  107. Dong X, Shi Y, Huang W, Chen P, Li LJ. Electrical detection of DNA hybridization with single‐base specificity using transistors based on CVD‐grown graphene sheets. Adv Mater. 2010;22(14):1649–53.

    Article  CAS  PubMed  Google Scholar 

  108. Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc. 2010;132(51):18012–3.

    Article  CAS  PubMed  Google Scholar 

  109. Agarwal S, Zhou X, Ye F, He Q, Chen GC, Soo J, Boey F, Zhang H, Chen P. Interfacing live cells with nanocarbon substrates. Langmuir. 2010;26(4):2244–7.

    Article  CAS  PubMed  Google Scholar 

  110. Sudibya HG, He Q, Zhang H, Chen P. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films. ACS Nano. 2011;5(3):1990–4.

    Article  CAS  PubMed  Google Scholar 

  111. Chen K-I, Li B-R, Chen Y-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today. 2011;6(2):131–54.

    Article  CAS  Google Scholar 

  112. Cui Y, Wei Q, Park H, Lieber CM. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science. 2001;293(5533):1289–92.

    Article  CAS  PubMed  Google Scholar 

  113. Movileanu L, Howorka S, Braha O, Bayley H. Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotechnol. 2000;18(10):1091–5.

    Article  CAS  PubMed  Google Scholar 

  114. Zheng G, Gao XP, Lieber CM. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010;10(8):3179–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hahm J-i, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004;4(1):51–4.

    Article  CAS  Google Scholar 

  116. Zhang G-J, Zhang L, Huang MJ, Luo ZHH, Tay GKI, Lim E-JA, Kang TG, Chen Y. Silicon nanowire biosensor for highly sensitive and rapid detection of Dengue virus. Sensors Actuators B Chem. 2010;146(1):138–44.

    Article  CAS  Google Scholar 

  117. Zhang G-J, Chua JH, Chee R-E, Agarwal A, Wong SM. Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens Bioelectron. 2009;24(8):2504–8.

    Article  CAS  PubMed  Google Scholar 

  118. Rutten WL. Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng. 2002;4(1):407–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Qiu, X., Zhou, J., Wang, P. (2016). Micro/Nano Material-Based Biosensors. In: Wang, P., Wu, C., Hu, N., Hsia, K. (eds) Micro/Nano Cell and Molecular Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-10-1658-5_7

Download citation

Publish with us

Policies and ethics