Skip to main content

A Study of Suslin Matrices: Their Properties and Uses

  • Conference paper
  • First Online:
Algebra and its Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 174))

Abstract

We describe recent developments in the study of unimodular rows over a commutative ring by studying the associated group \(SUm_r(R)\), generated by Suslin matrices associated to a pair of rows v, w with \(\langle v, w \rangle = 1\). We also sketch some futuristic developments which we expect on how this association will help to solve a long standing conjecture of Bass–Suslin (initially in the metastable range, and later the entire expectation) regarding the completion of unimodular polynomial rows over a local ring, as well as how this study will lead to understanding the geometry and physics of the orbit space of unimodular rows under the action of the elementary subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definition of \(E(e_1)(\lambda )\) was erroneously defined as \(\lambda I_{2^{r-1}} \perp \lambda ^{-1}I_{2^{r-1}}\) in [27].

References

  1. Apte, H., Chattopadhyay, P., Rao, R.A.: A local global theorem for extended ideals. J. Ramanujan Math. Soc. 27(1), 1–20 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asok, A., Fasel, J.: An explicit \(KO\)-degree map and applications. arXiv:1403.4588

  3. Asok, A., Fasel, J.: Euler Class Groups and Motivic Stable Cohomotopy, Preprint. http://arxiv.org/pdf/1601.05723v1.pdf

  4. Asok, A., Fasel, J.: Algebraic vector bundles on spheres. J. Topol. 7(3), 894–926 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asok, A., Fasel, J.: Splitting vector bundles outside the stable range and \({\mathbb{A}}^1\)-homotopy sheaves of punctured affine spaces. J. Am. Math. Soc. 28(4), 1031–1062 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bak, A.: Nonabelian \(K\)-Theory: The Nilpotent Class of \(K_1\) and General Stability. \(K\)-Theory 4(4), 363–397 (1991)

    Google Scholar 

  7. Bass, H.: Some problems in “classical” algebraic \(K\)-theory, Algebraic \(K\)-theory, II: “Classical” algebraic \(K\)-theory and connections with arithmetic. Proceedings of Conference, Battelle Memorial Institute, Seattle, Washington, 1972. Lecture Notes in Mathematics, vol. 342, pp. 3–73. Springer, Berlin (1973)

    Google Scholar 

  8. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem for SL\(_n\) (\(n \ge 2\)). Publ. Math. IHES 33, 59–137 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Basu, R., Rao, R.A.: Injective stability for \(K_1\) of classical modules. J. Algebra 323(4), 867–877 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Basu, R., Chattopadhyay, P., Rao, R.A.: Some remarks on symplectic injective stability. Proc. Am. Math. Soc. 139(7), 2317–2325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boratyński, M.: A note on set-theoretic complete intersection ideals. J. Algebra 54(1), 1–5 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chattopadhyay, P., Rao, R.A.: Elementary symplectic orbits and improved \(K_1\)-stability. J. \(K\)-Theory 7, 389–403 (2011)

    Google Scholar 

  13. Chattopadhya, P., Rao, R.A.: Equality of linear and symplectic orbits (with an Appendix by Alpesh Dhorajia). J. Pure Appl. Algebra 219, 5363–5386 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chattopadhyay, P., Rao, R.A.: Equality of elementary linear and symplectic orbits with respect to an alternating form. J. Algebra 451, 46–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chintala, V.R.: On Suslin matrices and their connection to spin groups. Doc. Math. 20, 531–550 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Cohn, P.M.: On the structure of the \({ GL}_{2}\) of a ring. Publ. Math. IHES 30, 5–53 (1966)

    Article  MathSciNet  Google Scholar 

  17. Fasel, J.: Mennicke symbols, \(K\)-cohomology and a Bass-Kubota theorem. Trans. Am. Math. Soc. 367(1), 191–208 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fasel, J., Srinivas, V.: Chow-Witt groups and Grothendieck-Witt groups of regular schemes. Adv. Math 221(1), 302–329 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fasel, J., Rao, R.A., Swan, R.G.: On stably free modules over affine algebras. Inst. Hautes Études Scientifiques 116(1), 223–243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fossum, R., Foxby, H.B., Iversen, B: A Characteristic class in Algebraic K-theory, Aarhus University, 1978–1979, Preprint Number 29 (Unpublished)

    Google Scholar 

  21. Garge, A.S., Rao, R.A.: A nice group structure on the orbit space of unimodular rows. \(K\)-Theory 38(2), 113–133 (2008)

    Google Scholar 

  22. Gupta, A.: Optimal injective stability for the symplectic K1Sp group. J. Pure Appl. Algebra 219(5), 1336–1348 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gupta, A., Garge, A., Rao, R.A.: A nice group structure on the orbit space of unimodular rowsII. J. Algebra 407, 201–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hazrat, R., Vavilov, N.: K\(_1\) of Chevalley groups are nilpotent. J. Pure Appl. Algebra 179(1–2), 99–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ischebeck, I., Rao, R.A.: Ideals and reality, Projective modules and number of generators of ideals. Springer Monographs in Mathematics. Springer, Berlin (2005). ISBN: 3-540-23032-7

    Google Scholar 

  26. Jose, S.: Quillen–Suslin theory, Ph.D. thesis submitted to the University of Pune (2007)

    Google Scholar 

  27. Jose, S., Rao, R.A.: A structure theorem for the elementary unimodular vector group. Trans. Am. Math. Soc. 358(7), 3097–3112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jose, S., Rao, R.A.: A local global principle for the elementary unimodular vector group. Commutative Algebra and Algebraic Geometry (Bangalore, India, 2003). Contemporary Mathematics, pp. 119–125. American Mathematical Society, Providence (2005)

    Google Scholar 

  29. Jose, S., Rao, R.A.: A fundamental property of Suslin matrices. J. \(K\)-Theory 5(3), 407–436 (2010)

    Google Scholar 

  30. Jose, S., Rao, R.A.: Suslin forms and the Hodge star operator. Linear Algebra Appl. 452, 328–344 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jose, S., Rao, R.A.: The orbit set and the orthogonal quotient. J. Algebra Appl. 15(6), 1650109 (2016)

    Article  MathSciNet  Google Scholar 

  32. Jose, S., Rao, R.A.: A Witt group structure on orbit spaces of unimodular rows (in preparation)

    Google Scholar 

  33. Katre, S.A., Rao, R.A., Sheth, D.N.: Solving linear systems via Pfaffians. Linear Algebra Appl. 430(4), 968–975 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Krusemeyer, M.: Completing \((\alpha ^{2}, \beta , \gamma )\). Conference on Commutative Algebra-1975. Queen’s Papers on Pure and Applied Mathematics, vol. 42, pp. 253–254. Queen’s University, Kingston, Ontario (1975)

    Google Scholar 

  35. Krusemeyer, M.: Skewly completable rows and a theorem of Swan and Towber. Commun. Algebra 4(7), 657–663 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lam, T.Y.: Springer Monographs in Mathematics. Springer, Berlin (2006)

    Google Scholar 

  37. Lindel, H.: On the Bass–Quillen conjecture concerning projective modules over polynomial rings. Invent. Math. 65(2), 319–323 (1981–1982)

    Google Scholar 

  38. Mohan Kumar, N.: Stably free modules. Am. J. Math. 107(6), 1439–1444 (1985, 1986)

    Google Scholar 

  39. Nori, M.V., Rao, R.A., Swan, R.G.: Non-self-dual stably free modules. Quadratic forms, linear algebraic groups, and cohomology. Developmental Mathematics, vol. 18, pp. 315–324. Springer, New York (2010)

    Google Scholar 

  40. Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rao, R.A.: Two examples of the Bass-Quillen-Suslin conjectures. Math. Ann. 279(2), 227–238 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rao, R.A.: The Bass-Quillen conjecture in dimension three but characteristic \(\ne 2,3\) via a question of A. Suslin. Invent. Math. 93(3), 609–618 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rao, R.A.: On completing unimodular polynomial vectors of length three. Trans. Am. Math. Soc. 325(1), 231–239 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rao, R.A.: An abelian group structure on orbits of “unimodular squares” in dimension \(3\). J. Algebra 210(1), 216–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rao, R.A.: A stably elementary homotopy. Proc. Am. Math. Soc. 137(11), 3637–3645 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rao, R.A., Jose, S.: Quillen-Suslin theory revisited. J. Pure Appl. Algebra 211(2), 541–546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rao, R.A., Jose, S.: A group structure on squares. Proc. Am. Math. Soc. 136(4), 1181–1191 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rao, R.A., Swan, R.G.: A Regenerative property of a fibre of Invertible Alternating Polynomial Matrices, in progress. www.math.uchicago.edu/swan/regenerative.pdf

  49. Rao, R.A., van der Kallen, W.: Improved stability for \(SK_1\) and \(WMS_d\) of a non-singular affine algebra. \(K\)-theory (Strasbourg, 1992). Astérisque 226, 411–420 (1994)

    Google Scholar 

  50. Rao, R.A., Basu, R., Jose, S.: Injective stability for \(K_1\) of the orthogonal group. J. Algebra 323(2), 393–396 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Roitman, M.: On stably extended projective modules over polynomial rings. Proc. Am. Math. Soc. 97(4), 585–589 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sridharan, R.: Homotopy and sections of algebraic vector bundles over real affine algebras. Comment. Math. Helv. 71(3), 435–452 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Suslin, A.A.: Projective modules over polynomial rings are free. (Russian). Dokl. Akad. Nauk SSSR 229(5), 1063–1066 (1976)

    MathSciNet  Google Scholar 

  54. Suslin, A.A., Vaserstein, L.N.: Serre’s problem on projective modules over polynomial rings and algebraic \(K\)-theory. Math. USSR Izv. 10, 937–1001 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  55. Suslin, A.A.: On the structure of the special linear group over polynomial rings. Math. USSR Izv. 11, 221–238 (1977)

    Article  MATH  Google Scholar 

  56. Suslin, A.A.: On stably free modules. Math. USSR Sbornik 31, 479–491 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  57. Suslin, A.A., Kopeiko, V.I.: Quadratic modules and the orthogonal group over polynomial rings. (Russian) Modules and representations. Zap. Naun. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 71, 216–250 (1977)

    Google Scholar 

  58. Suslin, A.A.: Reciprocity laws and the stable rank of polynomial rings. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 43(6), 1394–1429 (1979)

    Google Scholar 

  59. Suslin, A.A.: The cancellation problem for projective modules, and related questions. (Russian) Proceedings of the International Congress of Mathematicians (Helsinki, 1978), pp. 323–330. Academic Science, Fennica, Helsinki (1980)

    Google Scholar 

  60. Suslin, A.A.: Cancellation for affine varieties. (Russian) Modules and algebraic groups. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 114, 187–195 (1982)

    Google Scholar 

  61. Suslin, A.A.: Mennicke symbols and their applications in the \(K\)-theory of fields. Algebraic \(K\)-theory, Part I (Oberwolfach, 1980). Lecture Notes in Mathematics, vol. 966, pp.334–356. Springer, Berlin (1982)

    Google Scholar 

  62. Suslin, A.A.: \(K\)-theory and \(K\)-cohomology of certain group varieties. Algebraic \(K\)-Theory. Advances in Soviet Mathematics, vol. 4, pp. 53–74. American Mathematical Society, Providence (1991)

    Google Scholar 

  63. Swan, R.G.: A cancellation theorem for projective modules in the metastable range. Invent. Math. 27, 23–43 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  64. Swan, R.G.: On a Theorem of Mohan Kumar and Nori. http://www.math.uchicago.edu/swan/MKN.pdf

  65. Swan, R.G.: Some Stably Free Modules which are not Self Dual. http://www.math.uchicago.edu/swan/stablyfree.pdf

  66. Swan, R.G., Towber, J.: A class of projective modules which are nearly free. J. Algebra 36(3), 427–434 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  67. van der Kallen, W.: A group structure on certain orbit sets of unimodular rows. J. Algebra 82(2), 363–397 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  68. van der Kallen, W.: A module structure on certain orbit sets of unimodular rows. J. Pure Appl. Algebra 57(3), 281–316 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  69. van der Kallen, W.: From Mennicke symbols to Euler class groups. Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), 341–354, Tata Inst. Fund. Res. Stud. Math., 16: Tata Inst. Fund. Res, Bombay (2002)

    Google Scholar 

  70. Vaserstein, L.N.: On the stabilization of the general linear group over a ring. Mat. Sbornik (N.S.) 79(121), 405–424 (Russian). English translated in Math. USSR-Sbornik. 8, 383–400 (1969)

    Google Scholar 

  71. Vaserstein, L.N.: Stabilization of unitary and orthogonal groups over a ring with involution. Mat. Sbornik, Tom 81(123)(3), 307–326 (1970)

    Google Scholar 

  72. Vaserstein, L.N.: Stable range of rings and dimensionality of topological spaces. Fuct. Anal. Appl. 5(2), 102–110 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  73. Vaserstein, L.N.: Stabilization For Classical Groups over Rings. (Russian) Mat. Sb. (N.S.) 93(135), 268–295 (1974)

    Google Scholar 

  74. Vaserstein, L.N.: Operations on orbits of unimodular vectors. J. Algebra 100(2), 456–461 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  75. Vorst, T.: The general linear group of polynomial rings over regular rings. Commun. Algebra 9(5), 499–509 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The second named author would like to thank I.C.T.P., Trieste for its hospitality during which parts of this survey was studied. The authors thank Jean Fasel for his inputs on recent developments on Suslin matrices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi A. Rao .

Editor information

Editors and Affiliations

Appendix: Reflections via MuPAD

Appendix: Reflections via MuPAD

We define the reflection function \(\tau _{(x, y)}(z,w)\) via MuPAD for \(r = 4\), where x, y, z, w are vectors of length 5 as follows: In all the commands given below, we suppress the output by putting colon (:) at the end of each input statement.

To define the function \(\tau _{(x, y)}(z,w)\), we need to define the vectors x, y, z, w. The vectors x, y, z, w are defined as

  • x := matrix([[x0,x1,x2,x3,x4]]):

  • y := matrix([[y0,y1,y2,y3,y4]]):

  • z := matrix([[z0,z1,z2,z3,z4]]):

  • w := matrix([[b0,b1,b2,b3,b4]]):

  • assume(Type::Real):

  • f:=(x,y,z,w) -> linalg::scalarProduct(x,y) * matrix([z,w])

    -(linalg::scalarProduct(x,w) + linalg::scalarProduct(y,z))

    * matrix([x,y]):

The above statement defines the function

$$f(x,y,z,w) = \langle x, y \rangle (z, w) - (\langle x, w \rangle + \langle y, z \rangle )(x,y).$$

Thus f(x, y, z, w) will give the value of \(\tau _{(x, y)} (z,w)\).

As an illustration, we give the computation we did in the proof of Proposition 20 for \(i = 5, j = 3\). The computation uses the following vectors:

  • v := matrix([[a0,a1,a2,a3,a4]]):

  • w := matrix([[b0,b1,b2,b3,b4]]):

  • e1 := matrix([[1,0,0,0,0]]):

  • ei := matrix([[0,0,0,0,1]]):

  • ej := matrix([[0,0,1,0,0]]):

In the following input statements, we use \(\mathtt{L}\) for \(\lambda \). We first evaluate \(\tau _{(e_1-e_j,e_1)}\circ \tau _{(-(1-\lambda )e_1 + e_j,-e_1 + \lambda e_j)}\circ \tau _{(e_1 - e_j, e_1 - e_i)}\circ \tau _{(-(1+\lambda )e_1 + e_j,-e_1 - \lambda e_j + e_i)} \circ \tau _{(e_1,e_1-e_i)}\circ \tau _{(-e_1, -e_1+\lambda e_j + e_i)} \circ \tau _{(e_1,e_1-\lambda e_j)}\circ \tau _{(e_1,e_1)}\) at (v, w).

  • AA := simplify(f(e1,e1,v,w))

    Output:

    $$\begin{array}{rcl} v_1 &{} = &{} (-b_0, a_1, a_2, a_3, a_4) \mathrm{~and}\\ w_1 &{} = &{} (-a_0, b_1, b_2, b_3, b_4) \end{array}$$
  • AB := simplify(f(e1,e1-L*ej,AA[1],AA[2]))

    Output:

    $$\begin{array}{rcl} v_2 &{} = &{} (a_0 + LPa_2, a_1, a_2, a_3, a_4) \mathrm{~and}\\ w_2 &{} = &{} (b_0 + LPa_2, b_1, b_2 - L^{2}Pa_2 - LPa_0 - LPb_0, b_3, b_4) \end{array}$$
  • AC := simplify(f(-e1,-e1+L*ej+ei,AB[1],AB[2]))

    Output:

    $$\begin{array}{rcl} v_3 &{} = &{} (a_4 - b_0, a_1, a_2, a_3, a_4)\mathrm{~and}\\ w_3 &{} = &{} (-a_0+a_4, b_1, b_2-LPa_{4}, b_{3}, a_0-a_4+b_0+b_4+LPa_2) \end{array}$$
  • AD := simplify(f(e1,e1-ei,AC[1],AC[2]))

    Output:

    $$\begin{array}{rcl} v_4 &{} = &{} (a_0, a_1, a_2, a_3, a_4) \mathrm{~and}\\ w_4 &{} = &{} (b_0, b_1, b_2 - LPa_4, b_3, b_4 + LPa_2) \end{array}$$
  • AE := simplify(f(-(1+L)*e1+ej,-e1-L*ej+ei,AD[1],AD[2]))

    Output:

    $$\begin{array}{rcl} v_5 &{} = &{} (a_4\!-\!b_0+b_2\!-\!L^{2} Pa_2\!-\!L^{2} Pa_4\!-\!L^{2} Pb_0-LPa_0-LPa_{2}-2PLPb_0+LPb_2,\\ &{} &{} a_1,a_0+a_2-a_4 + b_0-b_2 + L.a_2+L.a_4+L.b_0, a_3,a_4) \mathrm{~and}\\ w_5 &{} = &{} (-a_0+a_4+b_2-LPa_2-LPa_4-LPb_0,b_1,\\ &{} &{} b_2-L^2Pa_2-L^2Pa_4-L^2Pb_0-LPa_0-LPb_0+LPb_2,b3, \\ &{} &{} a_0-a_4+b_0-b_2+b_4+2.L.a_2+L.a_4+L.b_0) \end{array}$$
  • AF := simplify(f(e1-ej,e1-ei,AE[1],AE[2]))

    Output:

    $$\begin{array}{rcl} v_6 &{} = &{} (a_0-L^{2} Pa_2-L^{2} Pa_4-L^{2} Pb_0-LPa_0+LPa_2+LPa_4+LPb_2,a_1,\\ &{} &{} a_2-LPa_2-LPb_0,a_3,a_4)\mathrm{~and}\\ w_6 &{} = &{} (b_0+LPa_2+LPb_0,b_1,\\ &{} &{} b_2-L^{2} Pa_2-L^{2} Pa_4-L^{2} Pb_0-LPa_0-LPb_0+LPb_2,b_3,b_4-LPb_0) \end{array}$$
  • AG := simplify(f(-(1-L)*e1+ej,-e1+L*ej,AF[1],AF[2]))

    Output:

    $$\begin{array}{rcl} v_7 &{} = &{} (-b_0+b_2,a_1,a_0+a_2+b_0-b_2+L.a_4,a_3,a_4)\mathrm{~and}\\ w_7 &{} = &{} (-a_0+b_2-L.a_4, b_1,b_2,b_3,b_4-L.b_0) \end{array}$$
  • AH := simplify(f(e1-ej,e1,AG[1],AG[2]))

    Output:

    $$\begin{array}{rcl} v_8 &{} = &{} (a_0+LPa_4,a_1,a_2,a_3,a_4) \mathrm{~and}\\ w_8 &{} = &{} (b_0,b_1,b_2,b_3,b_4-LPb_0) \end{array}$$

Note that this value is same as \(oe_{15}(\lambda ) \begin{pmatrix} v^t \\ w^t \end{pmatrix}\), where

$$oe_{15}(\lambda ) = \begin{pmatrix} 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad \lambda &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 &{} \quad 0 \\ 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad -\lambda &{} \quad 0 &{} \quad 0 &{} \quad 0 &{} \quad 1 \end{pmatrix}.$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Rao, R.A., Jose, S. (2016). A Study of Suslin Matrices: Their Properties and Uses. In: Rizvi, S., Ali, A., Filippis, V. (eds) Algebra and its Applications. Springer Proceedings in Mathematics & Statistics, vol 174. Springer, Singapore. https://doi.org/10.1007/978-981-10-1651-6_7

Download citation

Publish with us

Policies and ethics