Skip to main content

Stability Analysis of Carbon Nanotube Interconnects

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 467))

Abstract

This paper deals with frequency and stability response of single wall carbon nanotube bundle (SWB) and multiwall carbon nanotube bundle (MWB) at global interconnect lengths. The performance of SWB and MWB interconnects are analyzed using driver-interconnect-load system. It is analyzed that MWB interconnects are more stable than SWB interconnects. It is illustrated that stability of both SWB and MWB interconnects increases with increase in interconnect length. The analytical model for stability and frequency response using ABCD matrix has been formulated. Using frequency response, it is observed that the bandwidth of SWB and MWB interconnects are 7.94 and 22.2 GHz respectively for an interconnect length of 500 µm. The results are verified using SPICE simulations. The time delay analysis has been performed for different interconnect lengths. Further, it is investigated that delay reduces with increasing number of shells in MWB interconnect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chandel, R., Sarkar, S., Agarwal, R.P.: An analysis of interconnect delay minimization by low-voltage repeater insertion. Microelectron. J. 38, 649–655 (2007)

    Article  Google Scholar 

  2. Wen, W., Brongersma, S.H., Hove, M.V., Maex, K.: Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl. Phys. Lett. 84, 3238–3240 (2004)

    Article  Google Scholar 

  3. Goel, A.K.: High-speed VLSI Interconnections. Wiley-IEEE Press, New York (2007)

    Book  Google Scholar 

  4. Li, H., Xu, C., Srivastava, N., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices 56, 1799–1821 (2009)

    Article  Google Scholar 

  5. McEuen, P.L., Fuhrer, M.S., Park, H.: Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002)

    Article  Google Scholar 

  6. Naeemi, A., Meindl, J.: Compact physical models for mutliwall carbon-nanotube interconnects. IEEE Electron Device Lett. 27, 338–340 (2006)

    Article  Google Scholar 

  7. Li, H., Banerjee, K.: High-frequency analysis of carbon nanotube interconnects and implications for on-chip inductor design. IEEE Trans. Electron Devices 56, 2202–2214 (2009)

    Article  Google Scholar 

  8. Nasiri, H., Rahim, F., Farshi, M.K.M.: Stability analysis in multiwall carbon nanotube bundle interconnects. Microelectron. Reliab. 52, 3026–3034 (2012)

    Article  Google Scholar 

  9. Fathi, D., Forouzandeh, B., Mohajerzadeh, S., Sarvari, R.: Accurate analysis of carbon nanotube interconnects using transmission line model. Micro Nano Lett. IET 4, 116–121 (2009)

    Article  Google Scholar 

  10. Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanotube interconnects. IEEE Trans. Electron Devices 55, 1328–1337 (2008)

    Article  Google Scholar 

  11. Das, D., Rahaman, H.: Analysis of crosstalk in single-and multiwall carbon nanotube interconnects and its impact on gate oxide reliability. IEEE Trans. Nanotechnol. 10, 1362–1370 (2011)

    Article  Google Scholar 

  12. Majumder, M.K., Narasimha Reddy, K., Kaushik, B.K.: Frequency response and bandwidth analysis of multi-layer graphene nanoribbon and multi-walled carbon nanotube interconnects. Micro Nano Lett. IET 9, 557–560 (2014)

    Article  Google Scholar 

  13. Fathi, D., Forouzandeh, B.: A novel approach for stability analysis in carbon nanotube interconnects. IEEE Electron Device Lett. 30, 475–477 (2009)

    Article  Google Scholar 

  14. International Technology Roadmap for Semiconductors, 2012. [Online]. Available: http://public.itrs.net/

  15. Nagrath, I.J., Gopal, M.: Control Systems Engineering. Halsted Press, Sydney (1977)

    Google Scholar 

  16. Amore, D., Marcello Sarto, M.S., Tamburrano, A.: Fast transient analysis of next-generation interconnects based on carbon nanotubes. IEEE Trans. Electromagn. Comp. 52, 496–503 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mekala Girish Kumar .

Editor information

Editors and Affiliations

Appendix

Appendix

$$\left. {\begin{array}{*{20}l} {A = 1 + s\left[ {\frac{{R_{{esc}} C_{{esc}} \left( {px} \right)^{2} }}{2} + R_{d} C_{d} + C_{{esc}} \left( {px} \right)\left( {R_{{lump}} + R_{d} } \right)} \right] + s^{2} \left[ {\begin{array}{*{20}l} {\frac{{L_{{esc}} C_{{esc}} \left( {px} \right)^{2} }}{2} + \frac{{R_{{esc}}^{2} C_{{esc}}^{2} \left( {px} \right)^{4} }}{{24}}} \\ {\qquad + \frac{{R_{{esc}} R_{d} C_{{esc}} C_{d} \left( {px} \right)^{2} }}{2}} \\ \end{array} } \right.} \\ {\left. {\quad \quad \; + \frac{{R_{{esc}} C_{{esc}}^{2} \left( {px} \right)^{3} \left( {R_{{lump}} + R_{d} } \right)}}{6} + R_{{lump}} R_{d} C_{d} C_{{esc}} \left( {px} \right)} \right]} \\ \end{array} } \right\}$$
(A1)
$$\left. {\begin{array}{*{20}l} {B = \left( {2R_{lump} + R_{d} + R_{esc} \left( {px} \right)} \right) + s\left[ {\frac{{R_{esc} C_{esc} \left( {px} \right)^{2} }}{2}\left( {2R_{lump} + R_{d} } \right)} \right. + 2R_{lump} R_{d} C_{d} + \frac{{R_{esc} C_{esc} \left( {px} \right)^{3} }}{6}} \\ {\quad + L_{esc} \left( {px} \right)\,\left. { + R_{lump}^{2} C_{esc} \left( {px} \right) + R_{esc} R_{d} C_{d} \left( {px} \right) + R_{lump} R_{d} C_{esc} \left( {px} \right)} \right]} \\ {\quad + s^{2} \left[ {\left( {2R_{lump} + R_{d} } \right)\left( {\frac{{L_{esc} C_{esc} \left( {px} \right)^{2} }}{2} + \frac{{R_{esc}^{2} C_{esc}^{2} \left( {px} \right)^{4} }}{24}} \right)} \right. + R_{lump} R_{d} R_{esc} C_{esc} C_{d} \left( {px} \right)^{2} } \\ {\quad + \frac{{2R_{esc} L_{esc} C_{esc} \left( {px} \right)^{3} }}{6} + \frac{{R_{esc}^{3} C_{esc}^{2} \left( {px} \right)^{5} }}{120} + \frac{{R_{lump} \text{R}_{esc} C_{esc}^{2} \left( {px} \right)^{3} }}{6}} \\ {\quad + \left. {\frac{{R_{esc}^{2} R_{d} C_{d} C_{esc} \left( {px} \right)^{3} }}{6} + R_{d} C_{d} \left( {L_{esc} + R_{lump}^{2} C_{esc} } \right)\left( {px} \right)} \right]} \\ \end{array}} \right\}$$
(A2)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Kumar, M.G., Agrawal, Y., Chandel, R. (2017). Stability Analysis of Carbon Nanotube Interconnects. In: Deiva Sundari, P., Dash, S., Das, S., Panigrahi, B. (eds) Proceedings of 2nd International Conference on Intelligent Computing and Applications. Advances in Intelligent Systems and Computing, vol 467. Springer, Singapore. https://doi.org/10.1007/978-981-10-1645-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1645-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1644-8

  • Online ISBN: 978-981-10-1645-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics