Skip to main content

HELAC-Onia

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we will describe an automatic tree-level matrix elements and events generator for heavy quarkonium physics, which is dubbed as HELAC-Onia [1]. It will be used to do the heavy quarkonium phenomenological analysis in the following chapters. The package is already available on the Web page http://helac-phegas.web.cern.ch/helac-phegas. It is a first realization of automation for heavy quarkonium production at \(e^-e^+\) and pp, \(p\bar{p}\) collisions based on recursion relations. This chapter is organized as follows: In the first section, we will describe the theoretical framework for the realization of HELAC-Onia and then go to the details of HELAC-Onia in the next section.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    \(\lambda =\pm 1\) for a massless vector, whereas \(\lambda =\pm 1,0\) for a massive vector.

  2. 2.

    Note that, v is the relative velocity of the heavy quark pair.

  3. 3.

    In HELAC-Onia, we generalize the projectors in the case of the heavy quarks in different flavors that form a heavy quarkonium like \(B_c^{{\pm }}\).

  4. 4.

    The output file will be generated in the output directory.

  5. 5.

    “SDME” is an acronym for “spin-density matrix element”.

References

  1. H.S. Shao, Comput. Phys. Commun. 184, 2562 (2013). doi:10.1016/j.cpc.2013.05.023

    Article  ADS  Google Scholar 

  2. A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132, 306 (2000). doi:10.1016/S0010-4655(00)00151-X

    Article  ADS  Google Scholar 

  3. C. Papadopoulos, M. Worek, pp. 507–510 (2006)

    Google Scholar 

  4. A. Cafarella, C.G. Papadopoulos, M. Worek, Comput. Phys. Commun. 180, 1941 (2009). doi:10.1016/j.cpc.2009.04.023

    Article  ADS  Google Scholar 

  5. F. Dyson, Phys. Rev. 75, 1736 (1949). doi:10.1103/PhysRev.75.1736

    Article  ADS  MathSciNet  Google Scholar 

  6. J.S. Schwinger, Proc. Nat. Acad. Sci. 37, 452 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.S. Schwinger, Proc. Nat. Acad. Sci. 37, 455 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  8. F.A. Berends, W.T. Giele, Nucl. Phys. B 306, 759 (1988). doi:10.1016/0550-3213(88)90442-7

    Article  ADS  Google Scholar 

  9. F. Caravaglios, M. Moretti, Phys. Lett. B 358, 332 (1995). doi:10.1016/0370-2693(95)00971-M

    Article  ADS  Google Scholar 

  10. G. ’t Hooft, Nucl. Phys. B72, 461 (1974). doi:10.1016/0550-3213(74)90154-0

    Google Scholar 

  11. A. Kanaki, C.G. Papadopoulos (2000)

    Google Scholar 

  12. F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Phys. Rev. D 67, 014026 (2003). doi:10.1103/PhysRevD.67.014026

    Article  ADS  Google Scholar 

  13. A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, M.L. Mangano, Nucl. Phys. B 514, 245 (1998). doi:10.1016/S0550-3213(97)00801-8

    Article  ADS  Google Scholar 

  14. E.L. Berger, D.L. Jones, Phys. Rev. D 23, 1521 (1981). doi:10.1103/PhysRevD.23.1521

    Article  ADS  Google Scholar 

  15. Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. Lett. 106, 042002 (2011). doi:10.1103/PhysRevLett.106.042002

    Article  ADS  Google Scholar 

  16. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011). doi:10.1103/PhysRevLett.106.022003

    Article  ADS  Google Scholar 

  17. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 108, 172002 (2012)

    Article  ADS  Google Scholar 

  18. K.T. Chao, Y.Q. Ma, H.S. Shao, K. Wang, Y.J. Zhang, Phys. Rev. Lett. 108, 242004 (2012)

    Article  ADS  Google Scholar 

  19. B. Gong, L.P. Wan, J.X. Wang, H.F. Zhang, Phys. Rev. Lett. 110, 042002 (2013)

    Article  ADS  Google Scholar 

  20. H.S. Shao, H. Han, Y.Q. Ma, C. Meng, Y.J. Zhang, K.T. Chao, JHEP 05, 103 (2015). doi:10.1007/JHEP05(2015)103

    Article  ADS  Google Scholar 

  21. M. Butenschoen, B.A. Kniehl, Phys. Rev. Lett. 104, 072001 (2010). doi:10.1103/PhysRevLett.104.072001

    Article  ADS  Google Scholar 

  22. M. Butenschoen, B.A. Kniehl (2011)

    Google Scholar 

  23. M. Whalley, D. Bourilkov, R. Group (2005)

    Google Scholar 

  24. C.G. Papadopoulos, Comput. Phys. Commun. 137, 247 (2001). doi:10.1016/S0010-4655(01)00163-1

    Article  ADS  Google Scholar 

  25. R. Kleiss, W. Stirling, S. Ellis, Comput. Phys. Commun. 40, 359 (1986). doi:10.1016/0010-4655(86)90119-0

    Article  ADS  Google Scholar 

  26. G. Lepage, J. Comput. Phys. 27, 192 (1978). doi:10.1016/0021-9991(78)90004-9 (Revised version)

  27. P. Artoisenet, F. Maltoni, T. Stelzer, JHEP 0802, 102 (2008). doi:10.1088/1126-6708/2008/02/102 (17 pages, 7 figures)

  28. E. Boos, M. Dobbs, W. Giele, I. Hinchliffe, J. Huston, et al. (2001)

    Google Scholar 

  29. M. Beneke, M. Kramer, M. Vanttinen, Phys. Rev. D 57, 4258 (1998). doi:10.1103/PhysRevD.57.4258

    Article  ADS  Google Scholar 

  30. J. Fujimoto, Y. Shimizu, T. Munehisa, Prog. Theor. Phys. 90, 177 (1993). doi:10.1143/PTP.90.177

    Article  ADS  Google Scholar 

  31. T. Munehisa, J. Fujimoto, Y. Kurihara, Y. Shimizu, Prog. Theor. Phys. 95, 375 (1996). doi:10.1143/PTP.95.375

    Article  ADS  Google Scholar 

  32. Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. D 83, 111503 (2011). doi:10.1103/PhysRevD.83.111503

    Article  ADS  Google Scholar 

  33. H.S. Shao, K.T. Chao, Phys. Rev. D 90(1), 014002 (2014). doi:10.1103/PhysRevD.90.014002

    Article  ADS  Google Scholar 

  34. H.S. Shao, Y.Q. Ma, K. Wang, K.T. Chao, Phys. Rev. Lett. 112(18), 182003 (2014). doi:10.1103/PhysRevLett.112.182003

    Article  ADS  Google Scholar 

  35. P. Nason (2007)

    Google Scholar 

  36. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., JHEP 0207, 012 (2002)

    Article  ADS  Google Scholar 

  37. S. Brodsky, F. Fleuret, C. Hadjidakis, J. Lansberg, Phys. Rept. 522, 239 (2013). doi:10.1016/j.physrep.2012.10.001

    Article  ADS  Google Scholar 

  38. H.S. Shao, JHEP 04, 182 (2014)

    Article  ADS  Google Scholar 

  39. E. Ferreiro, F. Fleuret, J. Lansberg, A. Rakotozafindrabe, Phys. Rev. C 88, 047901 (2013). doi:10.1103/PhysRevC.88.047901

    Article  ADS  Google Scholar 

  40. W.J. den Dunnen, J.P. Lansberg, C. Pisano, M. Schlegel, Phys. Rev. Lett. 112, 212001 (2014). doi:10.1103/PhysRevLett.112.212001

    Article  ADS  Google Scholar 

  41. P. Artoisenet, J.M. Campbell, J. Lansberg, F. Maltoni, F. Tramontano, Phys. Rev. Lett. 101, 152001 (2008). doi:10.1103/PhysRevLett.101.152001

    Article  ADS  Google Scholar 

  42. J. Lansberg, Phys. Lett. B 679, 340 (2009). doi:10.1016/j.physletb.2009.07.067

    Article  ADS  Google Scholar 

  43. R. Kleiss, R. Pittau, Comput. Phys. Commun. 83, 141 (1994). doi:10.1016/0010-4655(94)90043-4

    Article  ADS  Google Scholar 

  44. T.A. Collaboration (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Sheng Shao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shao, HS. (2016). HELAC-Onia. In: Heavy Quarkonium Production Phenomenology and Automation of One-Loop Scattering Amplitude Computations. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1624-0_3

Download citation

Publish with us

Policies and ethics