Skip to main content

Simulation of a Crack Emanating from a Microvoid in Cement of a Reconstructed Acetabulum

  • Chapter
  • First Online:
Properties and Characterization of Modern Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 33))

  • 1718 Accesses

Abstract

In this study, the finite element method is used to analyse the crack behaviour emanating from a microvoid and the effects of the crack-microvoid and crack-crack interactions according to the crack locations in the cement of the reconstructed acetabulum by computing the stress intensity factor (SIF) at the crack tip. We selected one load case corresponding to the stem axis position of 50° which reflects the squatting activity. We show that the failure mode of these cracks (opening and shearing) depends on the orientation of the crack and its size. The crack initiated along the cement thickness propagates essentially in mode I. The initiated crack in the cement (90°) propagates in mode II and the crack inclined with 45° propagates in mixed mode. We also show that the crack propagation kinetics depend on the presence of the microdefects in the propagation crack path. This behaviour leads to the fracture of the cement and the loosening of the prosthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zouambi L, Serier B, Fekirini H et al (2013) Effect of cavity-cavity interaction on the stress amplitude in orthopaedic cement. J Biomat Nanobiotech 4:30–36

    Article  Google Scholar 

  2. Zouambi L, Serier B, Benamara N (2014) Effect of cavity-defects interaction on the mechanical behavior of the bone cement. Adv Mater Res 3(1):271–281

    Article  Google Scholar 

  3. Murphy BP, Prendergast PJ (2001) The relationship between stress, porosity, and non-linear damage accumulation in acrylic bone cement. Inc J Biomed Mater Res 59:646–654

    Article  Google Scholar 

  4. Benbarek S, Bachir Bouiadjra B, Achour T et al (2007) Finite element analysis of the behaviour of crack emanating from microvoid in cement of reconstructed acetabulum. Mater Sci Eng A 457:385–391

    Article  Google Scholar 

  5. Bhambrik SK, Gilbertson LN (1995) Micromechanisms of fatigue crack initiation and propagation in bone cements. J Biomed Mater Res 29:233–237

    Article  Google Scholar 

  6. Bouziane MM, Bachir Bouiadjra B, Benbarek S et al (2010) Finite element analysis of the behaviour of microvoids in the cement mantle of cemented hip stem: static and dynamic analysis. Mater Des 31:545–550

    Article  Google Scholar 

  7. Benbarek S, Bachir Bouiadjra B, Bouziane MM et al (2013) Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum. Mater Sci Eng C 33:543–549

    Article  Google Scholar 

  8. Grégoire D, Maigre H, Combescure A (2007) Simulation de la propagation dynamique de fissure sous chargement mixte et comparaisons expérimentales, 8ème Colloque National en Calcul des Structures

    Google Scholar 

  9. Nguyen NC, Maloney WJ, Dauskardt RH (1997) Reliability of PMMA bone cement fixation: fracture and crack-growth behaviour. J Mater Sci Mater Med 8:473–483

    Article  Google Scholar 

  10. Fineberg J, Gross SP, Marder M et al (1991) Instability in dynamic fracture. Phys Rev Lett 67(4):457–460

    Article  Google Scholar 

  11. Fineberg J, Gross SP, Marder M et al (1992) Instability in the propagation of fast cracks. Phys Rev B 45(10):5146–5154

    Article  Google Scholar 

  12. Melin S (1983) Why do cracks avoid each other? Inter J Fract 23(1):37–45

    Article  Google Scholar 

  13. Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128–7139

    Article  Google Scholar 

  14. Oshkour AA, Davoodi MM, Abu Osman NA et al (2013) Finite element analysis of circumferential crack behavior in cement femoral prosthesis interface. Mater Des 49:96–102

    Article  Google Scholar 

  15. Foucat D (2003) Effets de la présence d’un grillage métallique au sein du ciment de scellement des cupules des prothèses totales de hanches: Etude mécanique et thermique. Université de strasbourg, Thèse de doctorat

    Google Scholar 

  16. ABAQUS Inc (2011) Abaqus Ver 6-11, User Guide. Cornell University, Ithaca

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Serier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Serier, B., Zouambi, L., Bouziane, M.M., Benbarek, S., Bachir Bouiadjra, B. (2017). Simulation of a Crack Emanating from a Microvoid in Cement of a Reconstructed Acetabulum. In: Öchsner, A., Altenbach, H. (eds) Properties and Characterization of Modern Materials . Advanced Structured Materials, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-10-1602-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1602-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1601-1

  • Online ISBN: 978-981-10-1602-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics