Skip to main content

Electromagnetic Compatibility Aspects of Wind Turbine Analysis and Design

  • Chapter
  • First Online:
Properties and Characterization of Modern Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 33))

Abstract

The paper reviews numerical modeling of arbitrarily shaped wire antennas pertaining to some Electromagnetic Compatibility (EMC) issues in wind turbine (WT) analysis and design. The formulation is undertaken in the frequency domain and based on the related Electric Field Integral Equations—EFIE (Pocklington integro-differential equations for arbitrary wire structures in the presence of a lossy half-space). The influence of a dissipative half-space is taken into account via the rigorous Sommerfeld integral approach. The numerical solution of corresponding EFIE is carried out by means of the Galerkin-Bubnov Indirect Boundary Element Method (GB-IBEM) featuring the use of isoparametric elements while the Sommerfeld integrals are evaluated numerically. The corresponding transient response is obtained via the Inverse Fourier Transform (IFT). The computational examples are related to the transient response of WTs struck by lightning and the transient behaviour of the realistic grounding systems for WTs. The WTs are energized by either an ideal voltage or a current source, respectively. WT is represented by a corresponding multiple wire configuration, while the lightning channel is modelled as an equivalent lossy vertical wire attached to the wind turbine. Furthermore, the grounding system is composed from rings, horizontal and vertical electrodes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEC INTERNATIONAL STANDARD (2010) Wind turbine generation system—24: Lightning protection, IEC 61400-24. International Electro-technical Commission, Geneva

    Google Scholar 

  2. IEA (1997) Recommended practices for wind turbine testing and evaluation, 9. Lightning protection for wind turbine installations. ed. (1997)

    Google Scholar 

  3. IEE Professional Group S1 (1997) (New concepts in the generation, distribution and use of electrical energy): Half-day colloquium on “Lightning protection of wind turbines”, (1997, 11)

    Google Scholar 

  4. Sorensen T, Sorensen JT, Nielsen H (1998) Lightning damages to power generating wind turbines. In: Proceedings of 24th international conference on lightning protection (ICLP98):176–179

    Google Scholar 

  5. McNiff B (2002) Wind turbine lightning protection project 1999–2001. NREL Subcontractor report, SR-500-31115

    Google Scholar 

  6. Rachidi F, Rubinstein M, Montanya J et al (2008) A review of current issues in lightning protection of new-generation wind turbine blades. IEEE Trans Industr Electron 55(6):2489–2496

    Article  Google Scholar 

  7. Yoh Y, Toshiaki F, Toshiaki U (2007) How does ring earth electrode effect to wind turbine? Universities power engineering conference, UPEC 2007. 42nd international: pp 796–799

    Google Scholar 

  8. Glushakow B (2007) Effective lightning protection for windturbine generators. IEEE Trans Energy Convers 22(1):214–222

    Article  Google Scholar 

  9. IEC INTERNATIONAL STANDARD (2006) Protection against lightning—Part 3: physical damage to structures and life hazard. IEC 62305-3. International Electro-technical Commission, Geneva

    Google Scholar 

  10. Rakov VA (2001) Transient response of a tall object to lightning. IEEE Trans Electromagn Compat 43:654–661

    Article  Google Scholar 

  11. Rakov VA, Uman MA (1998) Review and evaluation of lightning return stroke models including some aspects of their application. IEEE Trans Electromagn Compat 40:403–426

    Article  Google Scholar 

  12. Rachidi F, Rakov VA, Nucci CA, Bermudez JL (2002) The effect of vertically-extended strike object on the distribution of current along the lightning channel. J Geophys Res 107(D23):4699

    Article  Google Scholar 

  13. Pavanello D, Rachidi F, Rakov VA, Nucci CA, Bermudez JL (2007) Return stroke current profiles and electromagnetic fields associated with lightning strikes to tall towers: comparison of engineering models. J Electrostat 65:316–321

    Article  Google Scholar 

  14. Podgorski S, Landt JA (1987) Three dimensional time domain modeling of lightning. IEEE Trans Power Deliv 2:931–938

    Article  Google Scholar 

  15. Petrache E, Rachidi F, Pavanello D et al (2005) Lightning strikes to elevated structures: influence of grounding conditions on currents and electromagnetic fields. In: Presented at IEEE international symposium on electromagnetic compatibility. Chicago

    Google Scholar 

  16. Petrache E, Rachidi F, Pavanello D et al (2005) Influence of the finite ground conductivity on the transient response to lightning of a tower and its grounding. In: Presented at 28th general assembly of international union of radio science (URSI), New Delhi, India

    Google Scholar 

  17. Podgorski S, Landt JA (1985) Numerical analysis of the lightning-CN tower interaction. In: Presented at 6th symposium and technical exhibition on electromagnetic compatibility, Zurich, Switzerland

    Google Scholar 

  18. Baba Y, Ishii M (2001) Numerical electromagnetic field analysis of lightning current in tall structures. IEEE Trans Power Delivery 16:324–328

    Article  Google Scholar 

  19. Kordi B, Moini R, Janischewskyj W et al (2003) Application of the antenna theory model to a tall tower struck by lightning. J Geophys Res 108

    Google Scholar 

  20. Meliopoulos AP, Moharam MG (1983) Transient analysis of grounding systems. IEEE Trans Power Appar Syst 102(2):389–399

    Article  Google Scholar 

  21. Ramamoorty M, Narayanan MMB, Parameswaran S, Mukhedkar D (1989) Transient performance of grounding grids. IEEE Trans Power Deliv 4(4):2053–2059

    Article  Google Scholar 

  22. Liu Y, Zitnik M, Thottappillil R (2001) An improved transmission line model of grounding system. IEEE Trans EMC 43(3):348–355

    Google Scholar 

  23. Lorentzou MI, Hatziargyriou ND, Papadias BC (2003) Time domain analysis of grounding electrodes impulse response. IEEE Trans Power Deliv 2:517–524

    Article  Google Scholar 

  24. Liu Y, Theethayi N, Thottappillil R (2005) An engineering model for transient analysis of grounding system under lightning strikes: nonuniform transmission-line approach. IEEE Trans Power Deliv 20(2):722–730

    Article  Google Scholar 

  25. Poljak D, Doric V (2006) Wire antenna model for transient analysis of simple grounding systems. Part I: the vertical grounding electrode. Prog Electromagnet Res 64:149–166

    Article  Google Scholar 

  26. Poljak D, Doric V (2006) Wire antenna model for transient analysis of simple grounding systems. Part II: the horizontal grounding electrode. Prog Electromagnet Res 64:167–189

    Article  Google Scholar 

  27. Grcev L, Dawalibi F (1990) An electromagnetic model for transients in grounding systems. IEEE Trans Power Deliv 5(4):1773–1781

    Article  Google Scholar 

  28. Grcev L, Heimbach M (1997) Frequency dependent and transient characteristics of substation grounding systems. IEEE Trans Power Deliv 12(1):172–178

    Article  Google Scholar 

  29. Cavka D, Harrat B, Poljak D, Nekhoul B, Kerroum K, Drissi KEK (2011) Wire antenna versus modified transmission line approach to the transient analysis of grounding grid. Eng Anal Bound Elem 3:1101–1108

    Article  MathSciNet  MATH  Google Scholar 

  30. Poljak D (2007) Advanced modeling in computational EMC. Wiley, New York

    Google Scholar 

  31. Poljak D, Drissi KEK, Nekhoul B (2013) Electromagnetic field coupling to arbitrary wire configurations buried in a lossy ground: a review of antenna model and transmission line approach. Int J Comput Methods Exp Meas 1(2):142–163

    Google Scholar 

  32. Hatziargvriou N, Lorentzou M, Cotton I, Jenkins N (1997) Wind farm earthing. In: Proceedings of IEE half-day colloquium on lightning protection of wind turbines, no. 6

    Google Scholar 

  33. Cotton I, Jenkins N (1997) The effects of lightning on structures and establishing the level of risk. In: Proceedings of IEE half-day colloquium on lightning protection of wind turbines, no. 3

    Google Scholar 

  34. Cotton I, Jenkins N (1999) Windfarm earthing. In: Proceedings of European wind energy conference (EWEC1999), pp 725–728

    Google Scholar 

  35. Lorentzou M, Hatziargyriou N, Papadias BC (2000) Analysis of wind turbine grounding systems. In: Proceeding of 10th mediterranean electrotechnical conference (MELECON2000). Cyprus, pp 936–939

    Google Scholar 

  36. Lewke B, Krug F, Kindersberger J (2006) Risk of lightning strike to wind turbines for maintenance personnel inside the hub. In: Proceedings of 28th international conference on lightning protection (ICLP2006), no. XI-9, Kanazawa

    Google Scholar 

  37. Ukar O, Zamora I (2011) Wind farm grounding system design for transient currents. Renew Energy 36:2004–2010. doi:10.1016/j.renene.2010.12.026

    Article  Google Scholar 

  38. Yasuda Y, Fuji T, Ueda T (2007) Transient analysis of ring earth electrode for wind turbine. In: Proceedings of European wind energy conference (EWEC2007), no. BL3.212, Milan

    Google Scholar 

  39. Muto A, Suzuki J, Ueda T (2010) Performance comparison of wind turbine blade receptor for lightning protection. In: Proceedings of 30th international conference on lightning protection (ICLP2010), no. 9A-1263, Cagliari

    Google Scholar 

  40. Yasuda Y, Uno N, Kobayashi H, Funabashi T (2008) Surge analysis on wind farm when winter lightning strikes. IEEE Trans Energy Convers 23(1):257–262

    Article  Google Scholar 

  41. Kontargyri VT, Gonos IF, Stathopulos IA (2005) Frequency response of grounding systems for wind turbine generators. In: Proceedings of the 14th international symposium on high-voltage engineering (ISH 2005) no. B-13, Beijing

    Google Scholar 

  42. Elmghairbi A, Haddad A, Griffiths H (2009) Potential rise and safety voltages of wind turbine earthing systems under transient conditions. In: Proceedings of 20th international conference on electricity distribution (CIRED2009), pp 8–11

    Google Scholar 

  43. Poljak D, Drissi KEK (2012) Electromagnetic field coupling to overhead wire configurations: antenna model versus transmission line approach. Int J Antennas Propag, pp 1–18

    Google Scholar 

  44. Rachidi F (2005) Modeling lightning return strokes to tall structures: recent development. In: VIII international symposium on lightning protection. Sao Paulo, Brazil

    Google Scholar 

  45. Burke GJ, Miller EK (1984) Modeling antennas near to and penetrating a lossy interface. IEEE Trans Antenna Propag 32(10):1040–1049

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Poljak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Poljak, D., Čavka, D. (2017). Electromagnetic Compatibility Aspects of Wind Turbine Analysis and Design. In: Öchsner, A., Altenbach, H. (eds) Properties and Characterization of Modern Materials . Advanced Structured Materials, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-10-1602-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1602-8_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1601-1

  • Online ISBN: 978-981-10-1602-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics