Skip to main content

Options for Nanoreinforced Cast Al–Si Alloys with TiO2 Nanoparticles

  • Chapter
  • First Online:
Properties and Characterization of Modern Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 33))

Abstract

This study presents a new concept of refining and enhancing the properties of cast aluminium alloys by adding nanoparticles. In this work the effect of adding titanium dioxide (TiO2) nano-particles (40 nm) to the aluminum cast alloy A356 as a base metal matrix was investigated. Titanium dioxide nano-powders were stirred into the A356 matrix with different fraction ratios ranging from (0, 1, 2, 3, 4, 5 %) by weight at variable stirring speeds ranging from (270, 800, 1500, 2150 rpm) in both the semisolid (600 °C) and liquid state (700 °C) using a constant stirring time of one minute. The cast microstructure exhibited change of grains from dendritic to spherical shape when increasing stirring speed. The fracture surface showed the presence of nanoparticles at the interdendritic spacing of the fracture surface and was confirmed with EDXS analysis of these particles. The results of the study showed that the mechanical properties (strength, elongation and hardness) for the nanoreinforced castings using TiO2 were enhanced for the castings made in the semi-solid state (600 °C) with 3 % weight% of TiO2 at 1500 rpm stirring speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kashyap K, Muralli S, Raman K, Murthy K (1993) Casting and heat treatment variables of Al–7Si–Mg alloy. Mater Sci Technol 9:189–203

    Article  Google Scholar 

  2. Gruzleski E, Closset B (1990) The treatment of liquid Aluminium-Silicon alloys. AFS, Des Plaines, Illinois, pp 107–126

    Google Scholar 

  3. Cacers C (2000) Microstructure effects on the strength-ductility relationship of AI-7Si-Mg casting alloys. Mater Sci Forum 331:223–228

    Article  Google Scholar 

  4. Rooy E (1992) ASM metals handbook, vol 15. Aluminum and aluminum alloys, Aluminum Company of America

    Google Scholar 

  5. Weixi S, Bo G, Tu G, Li S, Hao Y, Yu F (2010) Effect of neodymium on primary silicon and mechanical properties of hypereutectic Al-15 %Si alloy. J Rare Earths, vol 28. Spec. Issue, pp 367–370

    Google Scholar 

  6. Chen C, Liu Z, Ren B, Wang M, Weng Y, Liu Z (2007) Influences of complex modification of P and RE on microstructure and mechanical properties of hypereutectic Al-20Si alloy. Trans Nonferrous Met SOCC China 17:301–306

    Article  Google Scholar 

  7. Dahle AK, Nogita K, McDonald SD, Dinnis C, Lu L (2005) Eutectic modification and microstructure development in Al–Si Alloys. Mater Sci Eng A 413–414:243–248

    Article  Google Scholar 

  8. Cruz KS, Meza ES, Fernandes FAP, Quaresma JMV, Casteletti LC, Garcia A (2010) Dendritic arm spacing affecting mechanical properties and wear behavior of Al–Sn and Al–Si alloys directionally solidified under unsteady-state conditions. Metall Mater Trans A 41:972–984

    Article  Google Scholar 

  9. Mehrabian R, Riek R, Flemings M (1974) Preparation and casting of metal-particulate non-metal composites. Metall Trans 5A:1899–1905

    Article  Google Scholar 

  10. Eliasson J, Sandstorm R (1995) Applications of aluminium matrix composites. Part 1. In: Newaz GM, Neber-Aeschbacherand H, Wohlbier FH (eds). Trans. Tech. publications, Switzerland, pp 3–36

    Google Scholar 

  11. Rohatgi K, Asthana R, Das S (1986) Solidification, structure and properties of cast metal- ceramic particle composites. Int Metals Rev 31(3):115–139

    Google Scholar 

  12. Singh J, Alpas AT (1995) Elevated temperature wear of Al6061 and Al6061 20 % Al2O3. Scripta Metall Mater 32:1099–1105

    Article  Google Scholar 

  13. Seyed Reihani SM (2006) Processing of squeeze cast Al6061–30vol% SiC composites and their characterization. Mater Des 27:216–222

    Article  Google Scholar 

  14. Amirkhanlou S, Niroumand B (2011) Development of Al356/SiCp cast composites by injection of SiCp containing composite powders. Mater Des 32:1895–1902

    Article  Google Scholar 

  15. Jerome S, Ravisankar B, Kumar Mahato P, Natarajan S (2010) Synthesis and evaluation of mechanical and high temperature tribological properties of in-situ Al–TiC composites. Tribol Int 43:2029–2036

    Article  Google Scholar 

  16. El Mahallawi I, Egenfeld K, Kouta F, Hussein A, Mahmoud T, Rashad R, Shash A, Abou-AL-Hassan W (2008) Synthesis and characterization of new cast A356/ (Al2O3)p metal matrix nano- composites. In: Proceedings of the 2nd multifunctional nanocomposites & nanomaterials: international conference& exhibition MN2008, 11–13 Jan 2008, Cairo Egypt. Copyright © 2008 by ASME

    Google Scholar 

  17. El-Mahallawi I, Shash Y, Eigenfeld K, Mahmoud T, Rashad R, Shash A, El Saeed M (2010) Influence of nano-dispersions on strength ductility properties of semi-solid cast A356 Al alloy. Mater Sci Technol 26(10):1226–1231

    Article  Google Scholar 

  18. El-Mahallawi I, Abdelkader H, Yousef L, Amer A, Mayer J, Schwedt A (2012) Influence of Al2O3 nanodispersions on microstructure features and mechanical properties of cast and T6 heat-treated Al Si hypoeutectic alloys. Mater Sci Eng A 556:76–87

    Article  Google Scholar 

  19. El Mahallawi I, Shash Y, Rashad R, Abdelaziz M, Mayer J, Schwedt A (2014) Hardness and wear behavior of semi-solid cast A390 alloy reinforced with Al2O3 and TiO2 nanoparticles. Arab J Sci Eng 39:5171–5184

    Article  Google Scholar 

  20. Mazahery A, Baharvandi HR, Abdizadeh H (2009) Development of high performance A356-nano Al2O3 composites. Mater Sci Eng A 518:23–27

    Article  Google Scholar 

  21. Sajjadi S, Ezatpour H, Beygi H (2011) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Sci Eng A 528:8765–8771

    Article  Google Scholar 

  22. Choi H, Konishi H, Li X (2012) Al2O3 nanoparticles induced simultaneous refinement and modification of primary and eutectic Si particles in hypereutectic Al–20Si alloy. Mater Sci Eng A 541:159–165

    Article  Google Scholar 

  23. Haizhi Y (2003) An overview of the development of Al-Si-alloy based material for engine applications. J Mater Eng Perform JMEPEG 12:288–297

    Article  Google Scholar 

  24. Chawla K (2006) Metal matrix composites. Springer, Berlin

    Book  Google Scholar 

  25. Balasivanandha Prabu S (2006) Influence of stirring speed and stirring time on distribution of particles in cast MMC. J Mater Process Technol 171:268–273

    Article  Google Scholar 

  26. Shash A (2007) M. Sc. Thesis on “Effect of processing parameters on the mechanical characteristics of A356/(Al2O3)p cast metal matrix nano-composites (MMNCs)”, Cairo University

    Google Scholar 

  27. Koch C (2002) Nanostructured materials processing, properties and potential applications, pp 423–526

    Google Scholar 

  28. Kim G, Hong S, Lee M, Kim S, Ioka I, Kim B, Kim I (2010) Effect of oxide dispersion on dendritic grain growth characteristics of cast aluminum alloy. Mater Trans 51(10):1951–1957

    Article  Google Scholar 

  29. Fadavi Boostani A, Tahamtan S, Jiang Z, Wei D, Yazdani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Xu J, Zhang X, Gong D (2014) Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Composites: Part A, Available online 14 October 2014

    Google Scholar 

  30. Shash Ahmed Y, Amer Amer E, El-Saeed Moataz (2015) Influence of Al2O3 nano-dispersions on mechanical and wear resistance properties of semisolid cast A356 Al alloy, mechanical and materials engineering of modern structure and component design. J Adv Struct Mater 70:13–24 (Springer International Publishing)

    Article  Google Scholar 

  31. El-Mahallawi I, Shash A, Amer A (2015) Nanoreinforced cast Al-Si alloys with Al2O3, TiO2 and ZrO2 nanoparticles. J Metals 5(2):802–821

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the role of late Prof. Dr.-Ing. Y. Shash the head of Mechanical Design and Production Dept., Faculty of Engineering, Cairo University who advised and supported this work at its early stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Y. Shash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Shash, A.Y., El-Mahallawi, I.S., Amer, A.E. (2017). Options for Nanoreinforced Cast Al–Si Alloys with TiO2 Nanoparticles. In: Öchsner, A., Altenbach, H. (eds) Properties and Characterization of Modern Materials . Advanced Structured Materials, vol 33. Springer, Singapore. https://doi.org/10.1007/978-981-10-1602-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1602-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1601-1

  • Online ISBN: 978-981-10-1602-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics