Skip to main content

Lanthanide-Doped Core–Shell Upconversion Nanophosphors

  • Chapter
  • First Online:
Book cover Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Abstract

A core–shell upconversion (UC) nanoparticle is typically composed of an upconversion core coated with one or more shell layers, which essentially preserve the properties of core-only nanoparticle. However, when compared with the core-only nanoparticle, core–shell structure provides more rooms for UC studies due to the increased flexibility in nanoparticle design. The core–shell structure can boost the UC efficiency by passivating the surface lattice defects and shielding the core nanoparticles from the surrounding environment. In addition, core–shell structures greatly expand the optical tunability and enable functional integration at single nanoparticle levels. In this chapter, we highlight recent advances in general synthetic strategies and possibility for composing core–shell upconversion nanoparticles. We also bring to the forefront several challenges for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auzel F (1966) Compteur quantique par transfert d’énergie entre deux ions de terres rares dans un tungstate mixte et dans un verre germinate. C. R. Acad. Sci. 262: 1016.

    Google Scholar 

  2. Ovsyankin VV, Feofilov PP (1966) On the mechanism of adding of electronic excitations in doped crystals. Sov. Phys. JETP Lett. 3: 322.

    Google Scholar 

  3. Ovsyankin VV, Feofilov PP (1966) Cooperative sensitization of luminescence in crystals activated with rare earth ions. Sov. Phys. JETP Lett. 4: 317.

    Google Scholar 

  4. Chen X, Peng DF, Ju Q, Wang F (2015) Photon upconversion in core–shell nanoparticles. Chem. Soc. Rev. 44: 1318.

    Google Scholar 

  5. Gamelin DR, Güdel HU (2000) Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. Acc. Chem. Res. 33: 235.

    Google Scholar 

  6. Singh-Rachford TN, Castellano FN (2010) Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev, 254: 2560.

    Google Scholar 

  7. Stehr JE, Chen SL, Reddy NK, Tu CW, Chen WM, Buyanova IA (2014) Turning ZnO into an efficient energy upconversion material by defect engineering. Adv. Funct. Mater. 24: 3760.

    Google Scholar 

  8. Deutsch Z, Neeman L, Oron, D (2013) Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol. 8: 649.

    Google Scholar 

  9. Wang F, Deng RR, Wang J, Wang QX, Han Y, Zhu HM, Chen XY, Liu XG (2011) Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10: 968.

    Google Scholar 

  10. Huang LJ, Wang LL, Xue XJ, Zhao D, Qin GS, Qin WP (2011) Enhanced red upconversion luminescence in Er-Tm codoped NaYF4 phosphor. J. Nanosci. Nanotechnol. 11: 9498.

    Google Scholar 

  11. Wang GF, Peng Q, Li YD (2010) Luminescence tuning of upconversion nanocrystals. Chem. Eur. J. 16: 4923.

    Google Scholar 

  12. Bednarkiewicz A, Wawrzynczyk D, Nyk M, Strek W (2011) Synthesis and spectral properties of colloidal Nd3+ doped NaYF4 nanocrystals. Optical Materials 33: 1481.

    Google Scholar 

  13. Wang F, Liu XG (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130: 5642.

    Google Scholar 

  14. Gai SL, Li CX, Yang PP, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 114: 23430.

    Google Scholar 

  15. Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111: 13721.

    Google Scholar 

  16. Qian HS, Zhang Y (2008) Synthesis of hexagonal-phase core–shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24: 12123.

    Google Scholar 

  17. Zhang F, Che RC, Li XM, Yao C, Yang JP, Shen DK, Hu P, Li W, Zhao DY (2012) Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12: 2852.

    Google Scholar 

  18. Abel KA, Boyer JC, Andrei CM, van Veggel FCJM (2011) Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J. Phys. Chem. Lett. 2: 185.

    Google Scholar 

  19. Murry CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115: 8706.

    Google Scholar 

  20. Yi GH, Chow GM (2007) Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19: 341.

    Google Scholar 

  21. Li XM, Shen DK, Yang JP, Yao C, Che RC, Zhang F, Zhao DY (2013) Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25: 106.

    Google Scholar 

  22. Johnson NJJ, Korinek A, Dong CH, van Veggel FCJM (2012) Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 134: 11068.

    Google Scholar 

  23. Son DH, Hughes SM, Yin YD, Alivisatos AP (2004) Cation exchange reactions in ionic nanocrystals. Science, 306: 1009.

    Google Scholar 

  24. Dong CH, van Veggel FCJM (2008) Cation exchange in lanthanide fluoride nanoparticles. ACS Nano 3: 123.

    Google Scholar 

  25. Liu Q, Sun Y, Li CG, Zhou J, Li CY, Yang TS, Zhang XZ, Yi T, Wu DM, Li FY (2011) 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5: 3146.

    Google Scholar 

  26. Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29: 4122.

    Google Scholar 

  27. Mader HS, Link M, Achatz DE, Uhlmann K, Li XH, Wolfbeis OS (2010) Surface-modified upconverting microparticles and nanoparticles for use in click chemistries. Chem. Eur. J. 16: 5416.

    Google Scholar 

  28. Liu JN, Bu WB, Pan LM, Shi JL (2013) NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Ed. 52: 4375.

    Google Scholar 

  29. Qian HS, Guo HC, Ho PCL, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5: 2285.

    Google Scholar 

  30. Fan WP, Shen B, Bu WB, Chen F, Zhao KL, Zhang SJ, Zhou LP, Peng WJ, Xiao QF, Xing HY, Liu JN, Ni DL, He QJ, Shi JL (2013) Rattle-structured multifunctional nanotheranostics for synergetic chemo-/radiotherapy and simultaneous magnetic/luminescent dual-mode imaging. J. Am. Chem. Soc. 135: 6494.

    Google Scholar 

  31. Zhou HP, Xu CH, Sun W, Yan CH (2009) Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv. Funct. Mater. 19: 3892.

    Google Scholar 

  32. Cheng L, Yang K, Shao MW, Lee ST, Liu Z (2011) Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer. J. Phys. Chem. C 115: 2686.

    Google Scholar 

  33. Zhang H, Li YJ, Ivanov IA, Qu YQ, Huang Y, Duan XF (2010) Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49: 2865.

    Google Scholar 

  34. Yan CL, Dadvand A, Rosei F, Perepichka DF (2010) Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures. J. Am. Chem. Soc. 132: 8868.

    Google Scholar 

  35. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J. Am. Chem. Soc. 133: 20168.

    Google Scholar 

  36. Li ZQ, Wang LM, Wang ZY, Liu XH, Xiong YJ (2011) Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C 115: 3291.

    Google Scholar 

  37. Li ZQ, Zhang Y, Jiang S (2008) Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20: 4765.

    Google Scholar 

  38. Guo HS, Li ZQ, Qian HS, Hu, Y, Muhammad IN (2010) Seed-mediated synthesis of NaYF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology 21: 125602.

    Google Scholar 

  39. Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, Song J, Pandey RK, Ågren H, Prasad PN, Han, G (2012) (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6: 8280.

    Google Scholar 

  40. Vetrone F, Naccache R, Mahalingam V, Morgan CG, Capobianco J A (2009) The active-core/active-shell approach: a strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19: 2924.

    Google Scholar 

  41. Ghosh P, Oliva J, Rosa EDL, Haldar KK, Solis D, Patra A (2008) Enhancement of upconversion emission of LaPO4:Er@Yb core − shell nanoparticles/nanorods. J. Phys. Chem. C 112: 9650.

    Google Scholar 

  42. Yang DM, Li CX, Li GG, Shang MM, Kang XJ, Lin J (2011) Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J. Mater. Chem. 21: 5923.

    Google Scholar 

  43. Chen DQ, Yu YL, Huang F, Lin H, Huang P, Yang AP, Wang ZX, Wang YS (2012) Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. J. Mater. Chem. 22: 2632.

    Google Scholar 

  44. Zhong YT, Tian G, Gu ZJ, Yang YJ, Gu L, Zhao YL, Ma Y, Yao JN (2014) Elimination of photon quenching by a transition layer to fabricate a quenching‐shield sandwich structure for 800 nm excited upconversion luminescence of Nd3+‐sensitized nanoparticles. Adv. Mater. 26: 2831.

    Google Scholar 

  45. Liu XM, Kong XG, Zhang YL, Tu LP, Wang Y, Zeng QH, Li CG, Shi Z, Zhang H (2011) Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. Chem. Commun. 47: 11957–11959.

    Google Scholar 

  46. Li ZH, Park W, Zorzetto G, Lemaire JS, Summers CJ (2014) Synthesis protocols for δ-doped NaYF4: Yb, Er. Chem. Mater. 26: 1770.

    Google Scholar 

  47. Wen HL, Zhu H, Chen X, Hung TF, Wang BL, Zhu GY, Yu SF, Wang F (2013) Upconverting near‐infrared light through energy management in core–shell-shell nanoparticles. Angew. Chem. Int. Ed. 52: 13419.

    Google Scholar 

  48. Li XM, Wang R, Zhang F, Zhou L, Shen DK, Yao C, Zhao DY (2013) Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. Sci. Rep. 3: 3536.

    Google Scholar 

  49. Liu YS, Tu DT, Zhu HM, Li RF, Luo WQ, Chen XY (2010) A strategy to achieve efficient dual‐mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 22, 3266.

    Google Scholar 

  50. Chen HY, Qi B, Moore T, Colvin DC, Crawford T, Gore JC, Frank A, Mefford T, Anker JN (2014) Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small, 10: 160.

    Google Scholar 

  51. Zhang Y, Das GK, Vijayaragavan V, Xu QC, Padmanabhan P, Bhakoo KK, Selvan ST, Tan TTY (2014) “Smart” theranostic lanthanide nanoprobes with simultaneous up-conversion fluorescence and tunable T1-T2 magnetic resonance imaging contrast and near-infrared activated photodynamic therapy. Nanoscale 6: 12609.

    Google Scholar 

  52. Das GK, Johnson NJJ, Cramen J, Blasiak B, Latta P, Tomanek B, van Veggel FCJM (2012) NaDyF4 nanoparticles as T2 contrast agents for ultrahigh field magnetic resonance imaging. J. Phys. Chem. Lett. 3: 524.

    Google Scholar 

  53. Sun Y, Zhu XJ, Peng JJ, Li FY (2013) Core–shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7: 11290.

    Google Scholar 

  54. Su QQ, Han SY, Xie XJ, Zhu HM, Chen HY, Chen CK, Liu RS, Chen XY, Wang F, Liu XG (2012) The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 134: 20849.

    Google Scholar 

  55. Xie XJ, Gao NY, Deng RR, Sun Q, Xu QH, Liu XG (2013) Mechanistic investigation of photon upconversion in Nd3+-sensitized core–shell nanoparticles. J. Am. Chem. Soc. 135: 12608.

    Google Scholar 

  56. Wang, YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH (2013) Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7: 7200.

    Google Scholar 

  57. Gorris HH, Ali R, Saleh SM, Wolfbeis OS (2011) Tuning the dual emission of photon‐upconverting nanoparticles for ratiometric multiplexed encoding. Adv. Mater. 23: 1652.

    Google Scholar 

  58. Su LT, Karuturi SK, Luo JS, Liu LJ, Liu XF, Guo J, Sum TC, Deng RR, Fan HJ, Liu XG, Tok AIY (2013) Photon upconversion in hetero‐nanostructured photoanodes for enhanced near‐infrared light harvesting. Adv. Mater. 25: 1603.

    Google Scholar 

  59. Zhang J, Shade CM, Chengelis DA, Petoud S (2007) A strategy to protect and sensitize near-infrared luminescent Nd3+ and Yb3+: organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4 nanocrystals. J. Am. Chem. Soc. 129: 14834.

    Google Scholar 

  60. Zou WQ, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Broadband dye-sensitized upconversion of near-infrared light. Nat. Photon. 6: 560.

    Google Scholar 

Download references

Acknowledgments

F. Wang acknowledges the Research Grants Council of Hong Kong (CityU 109413) and National Natural Science Foundation of China (Nos. 21303149 and 51332008) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, T., Wang, F. (2016). Lanthanide-Doped Core–Shell Upconversion Nanophosphors. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_9

Download citation

Publish with us

Policies and ethics