Skip to main content
  • 2215 Accesses

Abstract

Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest due to their superior physicochemical features, such as large anti-Stokes shifts, low autofluorescence background, low toxicity, and high penetration depth, which make them extremely suitable for use as alternatives to conventional downshifting luminescence bioprobes such as organic dyes and quantum dots for various biological applications. Fundamental understanding the photophysics of lanthanide-doped UCNPs is of vital importance for discovering novel optical properties and exploring their new applications. In this chapter, we focus on the most recent advances in the development of lanthanide-doped UCNPs as potential luminescent nanobioprobes by means of our customized lanthanide photophysics measurement platforms specially designed for upconversion luminescence, which covers from their fundamental photophysics to bioapplications, including electronic structures (energy levels and local site symmetry of emitters), excited-state dynamics, UC luminescence enhancement strategies, and their promising applications for biodetection and bioimaging. Some future prospects and efforts toward this rapidly growing field are also envisioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139-173.

    Google Scholar 

  2. Suyver JF, Aebischer A, et al. (2005) Anomalous power dependence of sensitized upconversion luminescence. Phys Rev B 71(12):125123.

    Google Scholar 

  3. Liu G, Jacquier B (2005) Spectroscopic Properties of Rare Earths in Optical Materials. Springer: Berlin.

    Google Scholar 

  4. Wang YF, Liu GY, et al. (2013) Nd3+ Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect. ACS Nano 7(8):7200-7206.

    Google Scholar 

  5. Tu D, Liu Y, et al. (2013) Optical/Magnetic Multimodal Bioprobes Based on Lanthanide-Doped Inorganic Nanocrystals. Chem-Eur J 19(18):5516-5527.

    Google Scholar 

  6. Dong CH, Korinek A, et al. (2012) Cation Exchange: A Facile Method To Make NaYF4:Yb,Tm-NaGdF4 Core-Shell Nanoparticles with a Thin, Tunable, and Uniform Shell. Chem Mater 24(7):1297-1305.

    Google Scholar 

  7. van Veggel FCJM, Dong CH, et al. (2012) Ln3+ doped nanoparticles for upconversion and magnetic resonance imaging: some critical notes on recent progress and some aspects to be considered. Nanoscale 4(23):7309-7321.

    Google Scholar 

  8. Liu YS, Tu DT, et al. (2010) A Strategy to Achieve Efficient Dual-Mode Luminescence of Eu3+ in Lanthanides Doped Multifunctional NaGdF4 Nanocrystals. Adv Mater 22(30):3266-3271.

    Google Scholar 

  9. Wang J, Wei T, et al. (2014) Near-infrared-light-mediated imaging of latent fingerprints based on molecular recognition. Angew Chem Int Ed 53(6):1616-1620.

    Google Scholar 

  10. Liu Y, Chen M, et al. (2013) A Cyanine-Modified Nanosystem for in Vivo Upconversion Luminescence Bioimaging of Methylmercury. J Am Chem Soc 135(26):9869-9876.

    Google Scholar 

  11. Achatz DE, Meier RJ, et al. (2011) Luminescent Sensing of Oxygen Using a Quenchable Probe and Upconverting Nanoparticles. Angew Chem Int Ed 50(1):260-263.

    Google Scholar 

  12. Xing HY, Zhang SJ, et al. (2014) Ultrasmall NaGdF4 Nanodots for Efficient MR Angiography and Atherosclerotic Plaque Imaging. Adv Mater 26(23):3867-3872.

    Google Scholar 

  13. Chen HY, Qi B, et al. (2014) Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small 10(1):160-168.

    Google Scholar 

  14. Liu Q, Feng W, et al. (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8(10):2033-2044.

    Google Scholar 

  15. Yang YM, Shao Q, et al. (2012) In Vitro and In Vivo Uncaging and Bioluminescence Imaging by Using Photocaged Upconversion Nanoparticles. Angew Chem Int Ed 51(13):3125-3129.

    Google Scholar 

  16. Dong NN, Pedroni M, et al. (2011) NIR-to-NIR Two-Photon Excited CaF2: Tm3+,Yb3+ Nanoparticles: Multifunctional Nanoprobes for Highly Penetrating Fluorescence Bio-Imaging. ACS Nano 5(11):8665-8671.

    Google Scholar 

  17. Yang YM, Velmurugan B, et al. (2013) NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 9(17):2937-2944.

    Google Scholar 

  18. Viger ML, Grossman M, et al. (2013) Low power upconverted near-IR light for efficient polymeric nanoparticle degradation and cargo release. Adv Mater 25(27):3733-3738.

    Google Scholar 

  19. Dai YL, Xiao HH, et al. (2013) In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered trans-Platinum Pro-Drug-Conjugated Upconverison Nanoparticles. J Am Chem Soc 135(50):18920-18929.

    Google Scholar 

  20. Boyer JC, Carling CJ, et al. (2010) Two-Way Photoswitching Using One Type of Near-Infrared Light, Upconverting Nanoparticles, and Changing Only the Light Intensity. J Am Chem Soc 132(44):15766-15772.

    Google Scholar 

  21. Gai SL, Yang PP, et al. (2010) Synthesis of Magnetic, Up-Conversion Luminescent, and Mesoporous Core-Shell-Structured Nanocomposites as Drug Carriers. Adv Funct Mater 20(7):1166-1172.

    Google Scholar 

  22. Wang M, Chen Z, et al. (2014) Lanthanide-Doped Upconversion Nanoparticles Electrostatically Coupled with Photosensitizers for Near-Infrared-Triggered Photodynamic Therapy. Nanoscale 6(14):8274-8282.

    Google Scholar 

  23. Park YI, Kim HM, et al. (2012) Theranostic Probe Based on Lanthanide-Doped Nanoparticles for Simultaneous In Vivo Dual-Modal Imaging and Photodynamic Therapy. Adv Mater 24(42):5755-5761.

    Google Scholar 

  24. Idris NM, Gnanasammandhan MK, et al. (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580-1585.

    Google Scholar 

  25. Chen Q, Wang C, et al. (2014) Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 35(9):2915-2923.

    Google Scholar 

  26. Wang YH, Wang HG, et al. (2013) Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 34(31):7715-7724.

    Google Scholar 

  27. Cheng L, Yang K, et al. (2011) Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy. Angew Chem Int Ed 50(32):7385-7390.

    Google Scholar 

  28. Xiao QF, Zheng XP, et al. (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc 135(35):13041-13048.

    Google Scholar 

  29. Fan WP, Shen B, et al. (2013) Rattle-Structured Multifunctional Nanotheranostics for Synergetic Chemo-/Radiotherapy and Simultaneous Magnetic/Luminescent Dual-Mode Imaging. J Am Chem Soc 135(17):6494-6503.

    Google Scholar 

  30. Zhang YJ, Zheng F, et al. (2012) Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides. Nat Mater 11(9):817-826.

    Google Scholar 

  31. Chen GY, Qiu HL, et al. (2014) Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem Rev 114(10):5161-5214.

    Google Scholar 

  32. Wang F, Liu XG (2014) Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc Chem Res 47(4):1378-1385.

    Google Scholar 

  33. Sun LD, Wang YF, et al. (2014) Paradigms and challenges for bioapplication of rare Earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc Chem Res 47(4):1001-1009.

    Google Scholar 

  34. Gai SL, Li CX, et al. (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343-2389.

    Google Scholar 

  35. Liu YS, Tu DT, et al. (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42(16):6924-6958.

    Google Scholar 

  36. Li XM, Zhang F, et al. (2013) Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges. Nano Today 8(6):643-676.

    Google Scholar 

  37. Johnson NJJ, Veggel FCJM (2013) Sodium lanthanide fluoride core-shell nanocrystals: A general perspective on epitaxial shell growth. Nano Res 6(8):547-561.

    Google Scholar 

  38. Gorris HH, Wolfbeis OS (2013) Photon-Upconverting Nanoparticles for Optical Encoding and Multiplexing of Cells, Biomolecules, and Microspheres. Angew Chem Int Ed 52(13):3584-3600.

    Google Scholar 

  39. Feng W, Han CM, et al. (2013) Upconversion-nanophosphor-based functional nanocomposites. Adv Mater 25(37):5287-5303.

    Google Scholar 

  40. Zhou J, Liu Z, et al. (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41(3):1323-1349.

    Google Scholar 

  41. Gnach A, Bednarkiewicz A (2012) Lanthanide-doped up-converting nanoparticles: Merits and challenges. Nano Today 7(6):532-563.

    Google Scholar 

  42. Wang GF, Peng Q, et al. (2011) Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications. Acc Chem Res 44(5):322-332.

    Google Scholar 

  43. Erathodiyil N, Ying JY (2011) Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Acc Chem Res 44(10):925-935.

    Google Scholar 

  44. Haase M, Schafer H (2011) Upconverting Nanoparticles. Angew Chem Int Ed 50(26):5808-5829.

    Google Scholar 

  45. Eliseeva SV, Bunzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189-227.

    Google Scholar 

  46. Wang F, Banerjee D, et al. (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135(8):1839-1854.

    Google Scholar 

  47. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38(4):976-989.

    Google Scholar 

  48. Zhao JB, Jin DY, et al. (2013) Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8(10):729-734.

    Google Scholar 

  49. Schietinger S, Aichele T, et al. (2010) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10(1):134-138.

    Google Scholar 

  50. Wu SW, Han G, et al. (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106(27):10917-10921.

    Google Scholar 

  51. Luo WQ, Fu CY, et al. (2011) Er3+ Doped Anatase TiO2 Nanocrystals: Crystal-Field Levels, Excited-State Dynamics, Upconversion, and Defect Luminescence. Small 7(21):3046-3056.

    Google Scholar 

  52. Chivian JS, Case WE, et al. (1979) The photon avalanche: A new phenomenon in Pr3+ based infrared quantum counters. Appl Phys Lett 35(2):124-125.

    Google Scholar 

  53. Joubert M-F (1999) Photon avalanche upconversion in rare earth laser materials. Opt Mater 11(2–3):181-203.

    Google Scholar 

  54. Dexter DL (1957) Possibility of luminescent quantum yields greater than unity. Phys Rev 108(3):630-633.

    Google Scholar 

  55. Maciel GS, Biswas A, et al. (2000) Blue cooperative upconversion in Yb3+ doped multicomponent sol-gel-processed silica glass for three-dimensional display. Appl Phys Lett 76(15):1978-1980.

    Google Scholar 

  56. Wang HS, Duan CK, et al. (2008) Visible Upconversion Luminescence from Y2O3:Eu3+,Yb3+. J Phys Chem C 112(42):16651-16654.

    Google Scholar 

  57. Wang F, Deng RR, et al. (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10(12):968-973.

    Google Scholar 

  58. Su QQ, Han SY, et al. (2012) The Effect of Surface Coating on Energy Migration-Mediated Upconversion. J Am Chem Soc 134(51):20849-20857.

    Google Scholar 

  59. Sivakumar S, van Veggel FCJM, et al. (2007) Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): A new up-conversion process. J Am Chem Soc 129(3):620-625.

    Google Scholar 

  60. Wang JW, Tanner PA (2009) Upconversion for White Light Generation by a Single Compound. J Am Chem Soc 132(3):947-949.

    Google Scholar 

  61. Rodríguez Burbano DC, Rodríguez EM, et al. (2014) The near-IR photo-stimulated luminescence of CaS:Eu2+/Dy3+ nanophosphors. J Mater Chem C 2(2):228-231.

    Google Scholar 

  62. Bunzli JCG, Chauvin AS, et al. (2008) Lanthanide bimetallic helicates for in vitro imaging and sensing. In Fluorescence Methods and Applications: Spectroscopy, Imaging, and Probes. O. S. Wolfbeis, Ed.; Blackwell Publishing; Oxford pp 97-105.

    Google Scholar 

  63. Crosswhite HM, Crosswhite H (1984) Parametric model for f-shell configurations. I. The effective-operator Hamiltonian. J Opt Soc Am B: Opt Phys 1(2):246-254.

    Google Scholar 

  64. Wybourne BG (1965) Spectroscopic Properties of Rare Earths. Interscience: New York.

    Google Scholar 

  65. Carnall WT, Goodman GL, et al. (1989) A systematic analysis of the spectra of the lanthanides doped into single crystal lanthanum fluoride (LaF3). J Chem Phys 90(7):3443-3457.

    Google Scholar 

  66. Zheng W, Zhou SY, et al. (2013) Sub-10 nm Lanthanide-Doped CaF2 Nanoprobes for Time-Resolved Luminescent Biodetection. Angew Chem Int Ed 52(26):6671-6676.

    Google Scholar 

  67. Blasse G, Grabmaier BC (1994) Luminescent Materials. Springer-Verlag: Berlin.

    Google Scholar 

  68. Renero-Lecuna C, Martín-Rodríguez R, et al. (2011) Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF4:2 %Er3+,20 %Yb3+. Chem Mater 23(15):3442-3448.

    Google Scholar 

  69. Ju Q, Liu YS, et al. (2009) Optical Spectroscopy of Eu3+ Doped BaFCl Nanocrystals. J Phys Chem C 113(6):2309-2315.

    Google Scholar 

  70. Tanner PA (2010) Lanthanide Luminescence in Solids. In Lanthanide Luminescence:Photophysical, Analytical and Biological Aspects, Springer Ser Fluoresc. P. Hanninen; H. Harma, Eds.; Spinger-Verlag; Berlin Heidelberg.

    Google Scholar 

  71. Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048-1077.

    Google Scholar 

  72. Liu LQ, Chen XY (2007) Energy levels, fluorescence lifetime and Judd-Ofelt parameters of Eu3+ in Gd2O3 nanocrystals. Nanotechnology 18(25):255704.

    Google Scholar 

  73. Tanner PA (2013) Some misconceptions concerning the electronic spectra of tri-positive europium and cerium. Chem Soc Rev 42(12):5090-5101.

    Google Scholar 

  74. Judd BR (1962) Optical absoprtion intensities of rare-earth ions. Phys Rev 127(3):750-761.

    Google Scholar 

  75. Ofelt GS (1962) Intensities of Crystal Spectra of Rare-Earth Ions. J Chem Phys 37(3):511-520.

    Google Scholar 

  76. Chen XY, Zhao W, et al. (2004) Anomalous luminescence dynamics of Eu3+ in BaFCl microcrystals. Phys Rev B 70(20):205122.

    Google Scholar 

  77. Chen XY, Liu GK (2005) The standard and anomalous crystal-field spectra of Eu3+. J Solid State Chem 178(2):419-428.

    Google Scholar 

  78. Butler PH (1981) Point Group Symmetry Application: Method and Tables. Plenum: New York.

    Google Scholar 

  79. Bünzli J-CG (1989) Luminescent probes. In Lanthanide Probes in Life, Chemical and Eatrh Sciences. J.-C. G. Bünzli; G. R. Choppin, Eds.; North-Holland: Amsterdam pp 219.

    Google Scholar 

  80. Gorller-Walrand C, Binnemans K (1996) Rationalization of crystal-field parameterization. In Handbook on the Physics and Chemistry of Rare Earth. K. A. Gschneidner; Jr.; L. Eyring, Eds.; North-Holland: Amsterdam.

    Google Scholar 

  81. Tu DT, Liu YS, et al. (2013) Breakdown of Crystallographic Site Symmetry in Lanthanide-Doped NaYF4 Crystals. Angew Chem Int Ed 52(4):1128-1133.

    Google Scholar 

  82. Sobolev BP, Mineev DA, et al. (1963) Low-temperature hexagonal modification of NaYF4 having the gagarinite structure Dokl Akad Nauk SSSR 150(4):791-794.

    Google Scholar 

  83. Burns JH (1965) Crystal Structure of Hexagonal Sodium Neodymium Fluoride and Related Compounds. Inorg Chem 4(6):881-886.

    Google Scholar 

  84. Krämer KW, Biner D, et al. (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16(7):1244-1251.

    Google Scholar 

  85. Aebischer A, Hostettler M, et al. (2006) Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew Chem Int Ed 45(17):2802-2806.

    Google Scholar 

  86. Ju Q, Tu DT, et al. (2012) Amine-Functionalized Lanthanide-Doped KGdF4 Nanocrystals as Potential Optical/Magnetic Multimodal Bioprobes. J Am Chem Soc 134(2):1323-1330.

    Google Scholar 

  87. Liu R, Tu DT, et al. (2012) Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals. Nanoscale 4(15):4485-4491.

    Google Scholar 

  88. Chan EM, Gargas DJ, et al. (2012) Concentrating and Recycling Energy in Lanthanide Codopants for Efficient and Spectrally Pure Emission: The Case of NaYF4:Er3+/Tm3+ Upconverting Nanocrystals. J Phys Chem B 116(35):10561-10570.

    Google Scholar 

  89. Chan EM, Han G, et al. (2012) Combinatorial Discovery of Lanthanide-Doped Nanocrystals with Spectrally Pure Upconverted Emission. Nano Lett 12(7):3839-3845.

    Google Scholar 

  90. Xu CT, Zhan QQ, et al. (2013) Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev 7(5):663-697.

    Google Scholar 

  91. van Dijk JMF, Schuurmans MFH (1983) On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions. J Chem Phys 78(9):5317-5323.

    Google Scholar 

  92. Walsh BM, Barnes NP, et al. (1998) Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4. J Appl Phys 83(5):2772-2787.

    Google Scholar 

  93. Librantz AFH, Gomes L, et al. (2009) Population inversion of 1G4 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal. J Appl Phys 105(11):113503

    Google Scholar 

  94. Jiang XP, Yang ZM, et al. (2009) Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass. J Appl Phys 105(10):103113.

    Google Scholar 

  95. Tu DT, Liu LQ, et al. (2011) Time-Resolved FRET Biosensor Based on Amine-Functionalized Lanthanide-Doped NaYF4 Nanocrystals. Angew Chem Int Ed 50(28):6306-6310.

    Google Scholar 

  96. Kingsley JD, Fenner GE, et al. (1969) Kinetics and efficience of infrared-to visible conversion in LaF3:Yb,Er. Appl Phys Lett 15(4):115-117.

    Google Scholar 

  97. Kingsley JD (1970) Analysis of Energy Transfer and Infrared‐to‐Visible Conversion in LaF3:Yb, Er. J Appl Phys 41(1):175-182.

    Google Scholar 

  98. Zhao JB, Lu ZD, et al. (2013) Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. Nanoscale 5(3):944-952.

    Google Scholar 

  99. Wang F, Wang J, et al. (2010) Direct Evidence of a Surface Quenching Effect on Size-Dependent Luminescence of Upconversion Nanoparticles. Angew Chem Int Ed 49(41):7456-7460.

    Google Scholar 

  100. Pollnau M, Gamelin DR, et al. (2000) Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61(5):3337-3346.

    Google Scholar 

  101. Reed ED, Moos HW (1973) Multiphonon Relaxation of Excited States of Rare-Earth Ions in YVO4, YAsO4, and YPO4. Phys Rev B 8(3):980-986.

    Google Scholar 

  102. Layne CB, Weber MJ (1977) Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass. Phys Rev B 16(7):3259-3261.

    Google Scholar 

  103. Heer S, Kömpe K, et al. (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16(23-24):2102-2105.

    Google Scholar 

  104. Huang P, Zheng W, et al. (2014) Lanthanide-Doped LiLuF4 Upconversion Nanoprobes for the Detection of Disease Biomarkers. Angew Chem Int Ed 53(5):1252-1257.

    Google Scholar 

  105. Zeng SJ, Xiao JJ, et al. (2012) Bi-functional NaLuF4:Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J Mater Chem 22(19):9870-9874.

    Google Scholar 

  106. Wang LL, Lan M, et al. (2013) Enhanced deep-ultraviolet upconversion emission of Gd3+ sensitized by Yb3+ and Ho3+ in β-NaLuF4 microcrystals under 980 nm excitation. J Mater Chem C 1(13):2485-2490.

    Google Scholar 

  107. Wang J, Deng RR, et al. (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13(2):157-162.

    Google Scholar 

  108. Dexter DL, Schulman JH (1954) Theory of Concentration Quenching in Inorganic Phosphors. J Chem Phys 22(6):1063-1070.

    Google Scholar 

  109. Blasse G (1967) Concentration Quenching of Eu3+ Fluorescence. J Chem Phys 46(7):2583-2585.

    Google Scholar 

  110. Asawa CK, Robinson M (1966) Temperature-Dependent Concentration Quenching of Fluorescence by Cross Relaxation of Nd3+ in LaF3. Phys Rev 141(1):251-258.

    Google Scholar 

  111. Suyver JF, Grimm J, et al. (2006) Upconversion Spectroscopy and Properties of NaYF4 Doped with Er3+, Tm3+ and/or Yb3+. J Lumin 117(1):1-12.

    Google Scholar 

  112. Mahalingam V, Vetrone F, et al. (2009) Colloidal Tm3+/Yb3+ Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low-Energy Excitation. Adv Mater 21(40):4025-4028.

    Google Scholar 

  113. Chen GY, Shen J, et al. (2012) (alpha-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 6(9):8280-8287.

    Google Scholar 

  114. Chen DQ, Wang YS (2013) Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale 5(11):4621-4637.

    Google Scholar 

  115. Wang J, Wang F, et al. (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed 50(44):10369-10372.

    Google Scholar 

  116. Tian G, Gu ZJ, et al. (2012) Mn2+ Dopant-Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery. Adv Mater 24(9):1226-1231.

    Google Scholar 

  117. Zhao CZ, Kong XG, et al. (2013) Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 5(17):8084-8089.

    Google Scholar 

  118. Dou QQ, Zhang Y (2011) Tuning of the Structure and Emission Spectra of Upconversion Nanocrystals by Alkali Ion Doping. Langmuir 27(21):13236-13241.

    Google Scholar 

  119. Ramasamy P, Chandra P, et al. (2013) Enhanced upconversion luminescence in NaGdF4:Yb,Er nanocrystals by Fe3+ doping and their application in bioimaging. Nanoscale 5(18):8711-8717.

    Google Scholar 

  120. Niu WB, Wu SL, et al. (2013) Multicolor tunability and upconversion enhancement of fluoride nanoparticles by oxygen dopant. Nanoscale 5(17):8164-8171.

    Google Scholar 

  121. Wang F, Han Y, et al. (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463(7284):1061-1065.

    Google Scholar 

  122. Yi GS, Chow GM (2007) Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem Mater 19(3):341-343.

    Google Scholar 

  123. Schäfer H, Ptacek P, et al. (2008) Synthesis and Optical Properties of KYF4/Yb, Er Nanocrystals, and their Surface Modification with Undoped KYF4. Adv Funct Mater 18(19):2913-2918.

    Google Scholar 

  124. Abel KA, Boyer J-C, et al. (2009) Hard Proof of the NaYF4/NaGdF4 Nanocrystal Core/Shell Structure. J Am Chem Soc 131(41):14644-14645.

    Google Scholar 

  125. Zhang C, Lee JY (2013) Prevalence of Anisotropic Shell Growth in Rare Earth Core–Shell Upconversion Nanocrystals. ACS Nano 7(5):4393-4402.

    Google Scholar 

  126. Wang YF, Sun LD, et al. (2012) Rare-Earth Nanoparticles with Enhanced Upconversion Emission and Suppressed Rare-Earth-Ion Leakage. Chem-Eur J 18(18):5558-5564.

    Google Scholar 

  127. Vetrone F, Naccache R, et al. (2009) The Active-Core/Active-Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide-Doped Nanoparticles. Adv Funct Mater 19(18):2924-2929.

    Google Scholar 

  128. Ghosh P, Oliva J, et al. (2008) Enhancement of Upconversion Emission of LaPO4:Er@Yb Core − Shell Nanoparticles/Nanorods. J Phys Chem 112(26):9650-9658.

    Google Scholar 

  129. Yang DM, Li CX, et al. (2011) Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J Mater Chem 21(16):5923-5927.

    Google Scholar 

  130. Chen DQ, Yu YL, et al. (2012) Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. J Mater Chem 22(6):2632-2640.

    Google Scholar 

  131. Zhang F, Che RC, et al. (2012) Direct Imaging the Upconversion Nanocrystal Core/Shell Structure at the Subnanometer Level: Shell Thickness Dependence in Upconverting Optical Properties. Nano Lett 12(6):2852-2858.

    Google Scholar 

  132. Johnson NJJ, Korinek A, et al. (2012) Self-Focusing by Ostwald Ripening: A Strategy for Layer-by-Layer Epitaxial Growth on Upconverting Nanocrystals. J Am Chem Soc 134(27):11068-11071.

    Google Scholar 

  133. Li XM, Shen DK, et al. (2013) Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chem Mater 25(1):106-112.

    Google Scholar 

  134. Jain PK, Huang X, et al. (2008) Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc Chem Res 41(12):1578-1586.

    Google Scholar 

  135. Hutter E, Fendler JH (2004) Exploitation of Localized Surface Plasmon Resonance. Adv Mater 16(19):1685-1706.

    Google Scholar 

  136. Zhao J, Jensen L, et al. (2007) Interaction of Plasmon and Molecular Resonances for Rhodamine 6G Adsorbed on Silver Nanoparticles. J Am Chem Soc 129(24):7647-7656.

    Google Scholar 

  137. Singh MP, Strouse GF (2010) Involvement of the LSPR Spectral Overlap for Energy Transfer between a Dye and Au Nanoparticle. J Am Chem Soc 132(27):9383-9391.

    Google Scholar 

  138. Zhang H, Li YJ, et al. (2010) Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew Chem Int Ed 49(16):2865-2868.

    Google Scholar 

  139. Saboktakin M, Ye XC, et al. (2012) Metal-Enhanced Upconversion Luminescence Tunable through Metal Nanoparticle-Nanophosphor Separation. ACS Nano 6(10):8758-8766.

    Google Scholar 

  140. Saboktakin M, Ye XC, et al. (2013) Plasmonic Enhancement of Nanophosphor Upconversion Luminescence in Au Nanohole Arrays. ACS Nano 7(8):7186-7192.

    Google Scholar 

  141. Sun QC, Mundoor H, et al. (2014) Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals. Nano Lett 14(1):101-106.

    Google Scholar 

  142. Liu YX, Wang DS, et al. (2013) Magnetic Tuning of Upconversion Luminescence in Lanthanide-Doped Bifunctional Nanocrystals. Angew Chem Int Ed 52(16):4366-4369.

    Google Scholar 

  143. Hao JH, Zhang Y, et al. (2011) Electric-Induced Enhancement and Modulation of Upconversion Photoluminescence in Epitaxial BaTiO3:Yb/Er Thin Films. Angew Chem Int Ed 50(30):6876-6880.

    Google Scholar 

  144. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413(6852):226-230.

    Google Scholar 

  145. Tu DT, Zheng W, et al. (2014) Luminescent biodetection based on lanthanide-doped inorganic nanoprobes. Coord Chem Rev 273-274:13-29.

    Google Scholar 

  146. Weiss A, Abramowski D, et al. (2009) Single-step detection of mutant huntingtin in animal and human tissues: a bioassay for Huntington’s disease. Anal Biochem 395(1):8-15.

    Google Scholar 

  147. Siitari H, Hemmila I, et al. (1983) Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 301(5897):258-260.

    Google Scholar 

  148. Wang XD, Stolwijk JA, et al. (2012) Ultra-small, highly stable, and sensitive dual nanosensors for imaging intracellular oxygen and pH in cytosol. J Am Chem Soc 134(41):17011-17014.

    Google Scholar 

  149. Zijlmans H, Bonnet J, et al. (1999) Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Anal Biochem 267(1):30-36.

    Google Scholar 

  150. van de Rijke F, Zijlmans H, et al. (2001) Up-converting phosphor reporters for nucleic acid microarrays. Nat Biotechnol 19(3):273-276.

    Google Scholar 

  151. Zhang F, Shi QH, et al. (2011) Fluorescence Upconversion Microbarcodes for Multiplexed Biological Detection: Nucleic Acid Encoding. Adv Mater 23(33):3775-3779.

    Google Scholar 

  152. Zuiderwijk M, Tanke HJ, et al. (2003) An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clin Biochem 36(5):401-403.

    Google Scholar 

  153. Niedbala RS, Feindt H, et al. (2001) Detection of analytes by immunoassay using up-converting phosphor technology. Anal Biochem 293(1):22-30.

    Google Scholar 

  154. Hampl J, Hall M, et al. (2001) Upconverting phosphor reporters in immunochromatographic assays. Anal Biochem 288(2):176-187.

    Google Scholar 

  155. Li LP, Zhou L, et al. (2009) Development of up-converting phosphor technology-based lateral-flow assay for rapidly quantitative detection of hepatitis B surface antibody. Diagn Microbiol Infect Dis 63(2):165-172.

    Google Scholar 

  156. Zhao P, Wu YY, et al. (2014) Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum. Nanoscale 6(7):3804-3809.

    Google Scholar 

  157. Yan ZQ, Zhou L, et al. (2006) Rapid quantitative detection of Yersinia pestis by lateral-flow immunoassay and up-converting phosphor technology-based biosensor. Sensor Actuat B-Chem 119(2):656-663.

    Google Scholar 

  158. Liang GH, Xiao LF, et al. (2013) Label-free, nucleotide-mediated dispersion of magnetic nanoparticles for “non-sandwich type” MRI-based quantification of enzyme. Biosens Bioelectron 41:78-83.

    Google Scholar 

  159. Wu SJ, Duan N, et al. (2012) Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem Commun 48(40):4866-4868.

    Google Scholar 

  160. Wu SJ, Duan N, et al. (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100-3107.

    Google Scholar 

  161. Ukonaho T, Rantanen T, et al. (2007) Comparison of infrared-excited up-converting phosphors and europium nanoparticles as labels in a two-site immunoassay. Anal Chim Acta 596(1):106-115.

    Google Scholar 

  162. Ai Y, Tu DT, et al. (2013) Lanthanide-doped NaScF4 nanoprobes: crystal structure, optical spectroscopy and biodetection. Nanoscale 5(14):6430-6438.

    Google Scholar 

  163. Liu Y, Kobayashi T, et al. (2013) Sugar-attached upconversion lanthanide nanoparticles: A novel tool for high-throughput lectin assay. Bioorgan Med Chem 21(11):2832-2842.

    Google Scholar 

  164. Achatz DE, Ali R, et al. (2011) Luminescent chemical sensing, biosensing, and screening using upconverting nanoparticles. Top Curr Chem 300:29-50.

    Google Scholar 

  165. Corstjens P, Zuiderwijk M, et al. (2001) Use of Up-Converting Phosphor Reporters in Lateral-Flow Assays to Detect Specific Nucleic Acid Sequences: A Rapid, Sensitive DNA Test to Identify Human Papillomavirus Type 16 Infection. Clin Chem 47(10):1885-1893.

    Google Scholar 

  166. Li JJ, Ouellette AL, et al. (2008) Optical Scanner for Immunoassays With Up-Converting Phosphorescent Labels. IEEE Trans Biomed Eng 55(5):1560-1571.

    Google Scholar 

  167. Mokkapati VK, Sam Niedbala R, et al. (2007) Evaluation of UPlink–RSV. Ann NY Acad Sci 1098(1):476-485.

    Google Scholar 

  168. Wang LY, Li YD (2006) Green upconversion nanocrystals for DNA detection. Chem Commun (24):2557-2859.

    Google Scholar 

  169. Liu YS, Tu DT, et al. (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale 5(4):1369-1384

    Google Scholar 

  170. Bunzli JCG (2010) Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem Rev 110(5):2729-2755.

    Google Scholar 

  171. Rabouw FT, den Hartog SA, et al. (2014) Photonic effects on the Förster resonance energy transfer efficiency. Nat Commun 5:3610.

    Google Scholar 

  172. Yang YM, Zhao Q, et al. (2012) Luminescent Chemodosimeters for Bioimaging. Chem Rev 113(1):192-270.

    Google Scholar 

  173. Wang P, Ahmadov TO, et al. (2013) Ligase-assisted signal-amplifiable DNA detection using upconversion nanoparticles. RSC Adv 3(37):16326-16329.

    Google Scholar 

  174. Chen ZG, Chen HL, et al. (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023-3029.

    Google Scholar 

  175. Deng RR, Xie XJ, et al. (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133(50):20168-20171.

    Google Scholar 

  176. Zhang CL, Yuan YX, et al. (2011) Biosensing Platform Based on Fluorescence Resonance Energy Transfer from Upconverting Nanocrystals to Graphene Oxide. Angew Chem Int Ed 50(30):6851-6854.

    Google Scholar 

  177. Wang LY, Yan RX, et al. (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44(37):6054-6057.

    Google Scholar 

  178. Wang M, Hou W, et al. (2009) Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4:Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles. Anal Chem 81(21):8783-8789.

    Google Scholar 

  179. Ye WW, Tsang MK, et al. (2014) Upconversion Luminescence Resonance Energy Transfer (LRET)-Based Biosensor for Rapid and Ultrasensitive Detection of Avian Influenza Virus H7 Subtype. Small 10(12):2390-2397.

    Google Scholar 

  180. Yuan F, Chen HQ, et al. (2014) Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin. Chem-Eur J 20(10):2888-2894.

    Google Scholar 

  181. Zhang P, Rogelj S, et al. (2006) Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc 128(38):12410-12411.

    Google Scholar 

  182. Kumar M, Guo YY, et al. (2009) Highly sensitive and selective oligonucleotide sensor for sickle cell disease gene using photon upconverting nanoparticles. Biosens Bioelectron 24(5):1522-1526.

    Google Scholar 

  183. Liu JL, Cheng JT, et al. (2013) Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens Bioelectron 43:252-256.

    Google Scholar 

  184. Zhou F, Noor MO, et al. (2014) Luminescence resonance energy transfer-based nucleic acid hybridization assay on cellulose paper with upconverting phosphor as donors. Anal Chem 86(5):2719-2726.

    Google Scholar 

  185. Peng JH, Wang YH, et al. (2011) A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer. Biosens Bioelectron 28(1):414-420.

    Google Scholar 

  186. Song K, Kong XG, et al. (2012) Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Chem Commun 48(8):1156-1158.

    Google Scholar 

  187. Liu CH, Wang Z, et al. (2011) Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: a highly sensitive biosensing platform. Chem Commun 47(16):4661-4663.

    Google Scholar 

  188. Wu Y-M, Cen Y, et al. (2014) Upconversion fluorescence resonance energy transfer biosensor for sensitive detection of human immunodeficiency virus antibodies in human serum. Chem Commun 50(36):4759-4762.

    Google Scholar 

  189. Li H, Sun D-e, et al. (2014) An ultrasensitive homogeneous aptasensor for kanamycin based on upconversion fluorescence resonance energy transfer. Biosens Bioelectron 55:149-156.

    Google Scholar 

  190. Wang YH, Bao L, et al. (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83(21):8130-8137.

    Google Scholar 

  191. Zhang JP, Mi CC, et al. (2012) Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection. Anal Biochem 421(2):673-679.

    Google Scholar 

  192. Rantanen T, Jarvenpaa ML, et al. (2009) Upconverting phosphors in a dual-parameter LRET-based hybridization assay. Analyst 134(8):1713-1716.

    Google Scholar 

  193. Wang YH, Shen P, et al. (2012) Upconversion Fluorescence Resonance Energy Transfer Based Biosensor for Ultrasensitive Detection of Matrix Metalloproteinase-2 in Blood. Anal Chem 84(3):1466-1473.

    Google Scholar 

  194. He MY, Liu ZH (2013) Paper-based microfluidic device with upconversion fluorescence assay. Anal Chem 85(24):11691-11694.

    Google Scholar 

  195. Yuan YX, Wu SF, et al. (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50(9):1095-1097.

    Google Scholar 

  196. Wang XD, Wolfbeis OS, et al. (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42(19):7834-7869.

    Google Scholar 

  197. Jung JH, Lee JH, et al. (2011) Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev 40(9):4464-4474.

    Google Scholar 

  198. Wang M, Mi CC, et al. (2009) Immunolabeling and NIR-Excited Fluorescent Imaging of HeLa Cells by Using NaYF4:Yb,Er Upconversion Nanoparticles. ACS Nano 3(6):1580-1586.

    Google Scholar 

  199. Zhan QQ, Qian J, et al. (2011) Using 915 nm Laser Excited Tm3+/Er3+/Ho3+ Doped NaYbF4 Upconversion Nanoparticles for in Vitro and Deeper in Vivo Bioimaging without Overheating Irradiation. ACS Nano 5(5):3744-3757.

    Google Scholar 

  200. Yu MX, Li FY, et al. (2009) Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors. Anal Chem 81(3):930-935.

    Google Scholar 

  201. Hilderbrand SA, Shao FW, et al. (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun (28):4188-4190.

    Google Scholar 

  202. Zhou LJ, Gu ZJ, et al. (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22(3):966-974.

    Google Scholar 

  203. Zako T, Nagata H, et al. (2009) Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. Biochem Bioph Res Co 381(1):54-58.

    Google Scholar 

  204. Jiang S, Zhang Y, et al. (2009) NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA. Nanotechnology 20(15):155101.

    Google Scholar 

  205. Zeng JH, Su J, et al. (2005) Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+, phosphors of controlled size and morphology. Adv Mater 17(17):2119-2123.

    Google Scholar 

  206. Ye XC, Collins JE, et al. (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci USA 107(52):22430-22435.

    Google Scholar 

  207. Lim SF, Riehn R, et al. (2006) In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans. Nano Lett 6(2):169-174.

    Google Scholar 

  208. Xia A, Gao Y, et al. (2011) Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32(29):7200-7208.

    Google Scholar 

  209. Liu Q, Sun Y, et al. (2011) Sub-10 nm Hexagonal Lanthanide-Doped NaLuF4 Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. J Am Chem Soc 133(43):17122-17125.

    Google Scholar 

  210. Xia A, Chen M, et al. (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials 33(21):5394-5405.

    Google Scholar 

  211. Xing HY, Bu WB, et al. (2012) A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33(21):5384-5393.

    Google Scholar 

  212. Cheng L, Yang K, et al. (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33(7):2215-2222.

    Google Scholar 

  213. Cheng L, Wang C, et al. (2012) Multifunctional Upconversion Nanoparticles for Dual-Modal Imaging-Guided Stem Cell Therapy under Remote Magnetic Control. Adv Funct Mater 23(3):272-280.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the 973 program of MOST of China (No. 2014CB845605), Special Project of National Major Scientific Equipment Development of China (No. 2012YQ120060), the NSFC (Nos. 51402294, 21501180, 11204302, 21201163, 11304314, U1305244, and 21325104), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the CAS Strategic Priority Research Program and Scientific Equipment Development Project (Nos. XDA09030307 and YZ201210), Natural Science Fundation of Fujian Province for Young Scientists and Key Project (Nos. 2016J05057, 2014J05070, 2013J05038 and 2013H0060), and Chunmiao Project of Haixi Institute of Chinese Academy of Sciences (Nos. CMZX-2014-003 and CMZX-2016-002) and Youth Innovation Promotion Association of CAS (Nos. 2014264 and 2016277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueyuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tu, D., Zheng, W., Huang, P., Chen, X. (2016). Lanthanide-Doped Upconversion Nanoprobes. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_8

Download citation

Publish with us

Policies and ethics