Skip to main content

Phosphors with a 660-nm-Featured Emission for LED/LD Lighting in Horticulture

  • Chapter
  • First Online:

Abstract

Photosynthetically active radiation (PAR) of lighting sources is a prerequisite to match well with the absorption spectrum of photoreceptors in plants. Light-emitting diodes (LED) or laser diodes (LD) or its combination with phosphor can be used to construct the 660-nm-featured simultaneous emission of both red and blue light for PAR. A variety of rare earth (RE) ion-doped phosphors such as nitride, silicate, sulfide allow a 660-nm-peaked broadband emission with proper composition and preparation, as illustrated by a highly efficient A3MgSi2O8 (AMS, A = Ba, Sr, Ca) phosphor with a dual band emission at both 660 and 430 nm. These phosphors are excitable by sunlight, near ultraviolet (NUV), blue LED, or LD light sources as applied in the forms of particle, film, or transparent ceramics, providing a great potential to construct the artificial lighting sources in the closed, open, or their combined cultivation system with a customized, precise composition of light to achieve high photosynthetic efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, Kay SA (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285 (5427):553-556. doi:10.1126/science.285.5427.553

    Google Scholar 

  2. Ahmad M, Jarillo JA, Smirnova O, Cashmore AR (1998) Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Nature 392 (6677):720-723. doi:10.1038/33701

    Google Scholar 

  3. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opinion in Biotechnology 19 (2):153-159. doi:10.1016/j.copbio.2008.02.004

    Google Scholar 

  4. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3 (10):763-774. doi:10.1038/nchem.1145

    Google Scholar 

  5. Dugar D, Stephanopoulos G (2011) Relative potential of biosynthetic pathways for biofuels and bio-based products. Nature Biotechnology 29 (12):1074-1078. doi:10.1038/nbt.2055

    Google Scholar 

  6. Sheehan J (2009) Engineering direct conversion of CO(2) to biofuel. Nature Biotechnology 27 (12):1128-1129. doi:10.1038/nbt1209-1128

    Google Scholar 

  7. Liu C, Hwang YJ, Jeong HE, Yang PD (2011) Light-Induced Charge Transport within a Single Asymmetric Nanowire. Nano Lett 11 (9):3755-3758. doi:10.1021/nl201798e

    Google Scholar 

  8. Li CH, Wang F, Yu JC (2011) Semiconductor/biomolecular composites for solar energy applications. Energy Environ Sci 4 (1):100-113. doi:10.1039/c0ee00162g

    Google Scholar 

  9. Zhou H, Li XF, Fan TX, Osterloh FE, Ding J, Sabio EM, Zhang D, Guo QX (2010) Artificial Inorganic Leafs for Efficient Photochemical Hydrogen Production Inspired by Natural Photosynthesis. Adv Mater 22 (9):951-+. doi:10.1002/adma.200902039

    Google Scholar 

  10. Chisti Y, Yan J (2011) Energy from algae: Current status and future trends Algal biofuels - A status report. Applied Energy 88 (10):3277-3279. doi:10.1016/j.apenergy.2011.04.038

    Google Scholar 

  11. Torkamani S, Wani SN, Tang YJ, Sureshkumar R (2010) Plasmon-enhanced microalgal growth in miniphotobioreactors. Applied Physics Letters 97 (4):043703. doi:10.1063/1.3467263

    Google Scholar 

  12. McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9 (5):191-216

    Google Scholar 

  13. Pinho P, Jokinen K, Halonen L (2012) Horticultural lighting - present and future challenges. Lighting Research & Technology 44 (4):427-437. doi:10.1177/1477153511424986

    Google Scholar 

  14. Fankhauser C (2001) The phytochromes, a family of Red/Far-red absorbing photoreceptors. Journal of Biological Chemistry 276 (15):11453-11456. doi:10.1074/jbc.R100006200

    Google Scholar 

  15. Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. Journal of experimental botany 58 (12):3099-3111. doi:10.1093/jxb/erm130

    Google Scholar 

  16. Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Hortscience 39 (7):1617-1622

    Google Scholar 

  17. Waring J, Underwood GJC, Baker NR (2006) Impact of elevated UV-B radiation on photosynthetic electron transport, primary productivity and carbon allocation in estuarine epipelic diatoms. Plant Cell Environ 29 (4):521-534. doi:10.1111/j.1365-3040.2005.01429.x

    Google Scholar 

  18. Ge S, Smith RG, Jacovides CP, Kramer MG, Carruthers RI (2011) Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theor Appl Climatol 105 (1-2):107-118. doi:10.1007/s00704-010-0368-6

    Google Scholar 

  19. Cashmore AR, Jarillo JA, Wu YJ, Liu DM (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284 (5415):760-765. doi:10.1126/science.284.5415.760

    Google Scholar 

  20. Pettai H, Oja V, Freiberg A, Laisk A (2005) Photosynthetic activity of far-red light in green plants. Biochimica Et Biophysica Acta-Bioenergetics 1708 (3):311-321. doi:10.1016/j.bbabio.2005.05.005

    Google Scholar 

  21. Wendler J, Holzwarth AR (1987) State transitions in the green alga scenedesmus obliquus probed by time-resolved chlorophyll fluorescence spectroscopy and global data analysis. Biophysical journal 52 (5):717-728

    Google Scholar 

  22. Emerson R, Chalmers R, Cederstrand C (1957) Some factors influencing the long-wave limte of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America 43 (1):133-143. doi:10.1073/pnas.43.1.133

    Google Scholar 

  23. Pettai H, Oja V, Freiberg A, Laisk A (2005) The long-wavelength limit of plant photosynthesis. Febs Letters 579 (18):4017-4019. doi:10.1016/j.febslet.2005.04.088

    Google Scholar 

  24. Lee MJ, Park SY, Oh MM (2015) Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Horticulture Environment and Biotechnology 56 (2):186-194. doi:10.1007/s13580-015-0130-1

    Google Scholar 

  25. Finlayson SA, Hays DB, Morgan P (2007) phyB-1 sorghum maintains responsiveness to simulated shade, irradiance and red light: far-red light. Plant Cell Environ 30 (8):952-962. doi:10.1111/j.1365-3040.2007.01695.x

    Google Scholar 

  26. Oh JH, Kang H, Park HK, Do YR (2015) Optimization of the theoretical photosynthesis performance and vision-friendly quality of multi-package purplish white LED lighting. Rsc Advances 5 (28):21745-21754. doi:10.1039/c4ra13853h

    Google Scholar 

  27. Yano A, Fujiwara K (2012) Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control. Plant Methods 8:46. doi:10.1186/1746-4811-8-46

    Google Scholar 

  28. D.Despommier (2010) The vertical farm: feeding the world in the 21st century St. Martin’s Press

    Google Scholar 

  29. Morrow RC (2008) LED Lighting in Horticulture. Hortscience 43 (7):1947-1950

    Google Scholar 

  30. Kitai A (ed) (2008) Luminescent Materials and Applications. John Wiley & Sons, Ltd

    Google Scholar 

  31. Wierer JJ, Jr., Tsao JY, Sizov DS (2013) Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser & Photonics Reviews 7 (6):963-993. doi:10.1002/lpor.201300048

    Google Scholar 

  32. Blasse G, wanmaker.w.L (1968) Fluorescence of Eu2+ activated silicates. Philips Res Repts 23:189-200

    Google Scholar 

  33. Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Liu R-S, Chen X (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature Communications 5:4312. doi:10.1038/ncomms5312

  34. Thiyagarajan P, Rao MSR (2010) Cool white light emission on Ca3MgSi2O8:Ce3+ Eu2+ phosphors and analysis of energy transfer mechanism. Appl Phys A-Mater Sci Process 99 (4):947-953. doi:10.1007/s00339-010-5702-4

    Google Scholar 

  35. Yonesaki Y, Takei T, Kumada N, Kinomura N (2010) Sensitized red luminescence from Ce3+, Mn2+-doped glaserite-type alkaline-earth silicates. J Solid State Chem 183 (6):1303-1308. doi:10.1016/j.jssc.2010.04.004

    Google Scholar 

  36. Yonesaki Y, Takei T, Kumada N, Kinomura N (2008) Crystal structure of BaCaMgSi2O8 and the photoluminescent properties activated by Eu2+. Journal of Luminescence 128 (9):1507-1514. doi:10.1016/j.jlumin.2008.02.011

    Google Scholar 

  37. Im WB, Kim YI, Yoo HS, Jeon DY (2009) Luminescent and Structural properties of (Sr1-x,Bax)3MgSi2O8:Eu2+: Effects of Ba Content on the Eu2 + Site preference for Thermal Stability. Inorg Chem 48 (2):557-564. doi:10.1021/ic8012798

    Google Scholar 

  38. Umetsu Y, Okamoto S, Yamamoto H (2008) Photoluminescence properties of Ba3MgSi2O8: Eu2+ blue phosphor and Ba3MgSi2O8: Eu2+,Mn2+ blue-red phosphor under near-ultraviolet-light excitation. Journal of the Electrochemical Society 155 (7):J193-J197. doi:10.1149/1.2908877

    Google Scholar 

  39. Okamoto S, Nanba Y, Honma T, Yamamoto H (2008) Ba-substitution effect on luminescent properties and thermal degradation of Sr3MgSi2O8: Eu2+ blue phosphor under Vacuum-UV-Light excitation. Electrochemical and Solid State Letters 11 (6):J47-J49. doi:10.1149/1.2894909

    Google Scholar 

  40. Kim JS, Jeon PE, Choi JC, Park HL, Mho SI, Kim GC (2004) Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8: Eu2+, Mn2+ phosphor. Applied Physics Letters 84 (15):2931. doi:10.1063/1.1695441

    Google Scholar 

  41. Kim JS, Kwon AK, Park YH, Choi JC, Park HL, Kim GC (2007) Luminescent and thermal properties of full-color emitting X3MgSi2O8:Eu2+, Mn2+ (X = Ba, Sr, Ca) phosphors for white LED. Journal of Luminescence 122-123:583-586. doi:10.1016/j.jlumin.2006.01.231

    Google Scholar 

  42. Cai Y, Lu QF, Li J, Qiu K, Wang P, Ding M, Wang DJ (2012) Intensification of the Photosynthetic Action Spectrum of Ba3MgSi2O8: Eu2+, Mn2+ Phosphor with Metal-Enhanced Fluorescence. Electrochem Solid State Lett 15 (2):P1-P4. doi:10.1149/2.014202esl

    Google Scholar 

  43. Ma L, Wang D-j, Mao Z-y, Lu Q-f, Yuan Z-h (2008) Investigation of Eu–Mn energy transfer in A3MgSi2O8:Eu2+, Mn2+ (A = Ca,Sr,Ba) for light-emitting diodes for plant cultivation. Applied Physics Letters 93 (14):144101. doi:10.1063/1.2996256

    Google Scholar 

  44. Jung HK, Seo KS (2006) Luminescent properties of Eu2+-activated (Ba,Sr)3MgSi2O8 phosphor under VUV irradiation. Opt Mater 28 (6-7):602-605

    Google Scholar 

  45. Sun XYY, Zhang JH, Zhang X, Lu SZ, Wang XJ (2007) A white light phosphor suitable for near ultraviolet excitation. Journal of Luminescence 122:955-957. doi:10.1016/j.jlumin.2006.01.336

    Google Scholar 

  46. Hwangbo S, Jeon YS, Kang BA, Kim YS, Hwang KS, Kim JT (2010) Sol-gel derived blue-emitting Sr3MgSi2O8:Eu2+ oxide phosphor for ultraviolet emitting diodes. J Ceram Process Res 11 (4):513-515

    Google Scholar 

  47. Jung KY, Han KH, Jung HK (2009) Luminescence Optimization of M3MgSi2O8:Eu2+ Phosphor by Spray Pyrolysis Combined with Combinatorial Chemistry for UV-LED Application. Journal of the Electrochemical Society 156 (6):J129-J133

    Google Scholar 

  48. Pan W, Ning GL (2007) Synthesis and luminescence properties of Sr3MgSi2O8:Eu2+, Dy3+ by a novel silica-nanocoating method. Sensors and Actuators a-Physical 139 (1-2):318-322. doi:10.1016/j.sna.2006.12.021

    Google Scholar 

  49. Lin YH, Zhang ZT, Tang ZL, Wang XX, Zhang JY, Zheng ZS (2001) Luminescent properties of a new long afterglow Eu2+ and Dy3+ activated Ca3MgSi2O8 phosphor. Journal of the European Ceramic Society 21 (5):683-685

    Google Scholar 

  50. Barry TL (1968) Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8 and Ca3MgSi2O8. JElectrochemSoc: Solid State Science 115:733-738

    Google Scholar 

  51. Park C-H, Kim T-H, Yonesaki Y, Kumada N (2011) A re-investigation of the crystal structure and luminescence of BaCa2MgSi2O8:Eu2+. J Solid State Chem 184:1566-1570

    Google Scholar 

  52. Yonesaki Y, Takei T, Kumada N, Kinomura N (2009) Crystal structure of EU2 + -doped M3MgSi2O8 (M: Ba, Sr, Ca) compounds and their emission properties. J Solid State Chem 182 (3):547-554

    Google Scholar 

  53. Park CH, Hong ST, Keszler DA (2009) Superstructure of a phosphor material Ba3MgSi2O8 determined by neutron diffraction data. J Solid State Chem 182 (3):496-501. doi:10.1016/j.jssc.2008.11.024

    Google Scholar 

  54. Iwata T, Horie T, Fukuda K (2009) Reinvestigation of crystal structure and structural disorder of Ba3MgSi2O8. Powder Diffr 24 (3):180-184

    Google Scholar 

  55. Aitasalo T, Hietikko A, Holsa J, Lastusaari M, Niittykoski J, Piispanen T (2007) Crystal Structure of the Ba3MgSi2O8: Mn2+,Eu2+ phosphor for white light emitting diodes. Z Kristallogr:461-466

    Google Scholar 

  56. Ma L, Wang DJ, Zhang HM, Gu TC, Yuan ZH (2008) The origin of 505 nm-peaked photoluminescence from Ba3MgSi2O8: Eu2+, Mn2+ phosphor for white-light-emitting diodes. Electrochemical and Solid State Letters 11 (2):E1-E4. doi:10.1149/1.2817472

    Google Scholar 

  57. Kim JS, Jeon PE, Park YH, Choi JC, Park HL, Kim GC, Kim TW (2004) White-light generation through ultraviolet-emitting diode and white-emitting phosphor. Applied Physics Letters 85 (17):3696. doi:10.1063/1.1808501

    Google Scholar 

  58. Lu Q-F, Li J, Wang D-J (2013) Single-phased silicate-hosted phosphor with 660 nm-featured band emission for biological light-emitting diodes. Current Applied Physics 13 (7):1506-1511. doi:10.1016/j.cap.2013.05.013

    Google Scholar 

  59. Wang L, Lu Q, Li J, Lin C, Cao L, Wang D (2013) Microwave firing-incubation of cage-like (Ba,Sr) 3MgSi2O8:0.06Eu2+,0.1Mn2+ sphere from sprayed template-free xerogel particles. J Rare Earths 31 (6):541-545. doi:10.1016/s1002-0721(12)60316-0

    Google Scholar 

  60. Cao L-s, Lu Q-f, Wang L-c, Li J, Song J, Wang D-J (2013) Microwave-induced small size effect of (Ba,Sr)3MgSi2O8:0.06Eu2+, 0.1Mn2+ phosphor for 660 nm-featured bio-lighting. Ceram Int 39 (7):7717-7720. doi:10.1016/j.ceramint.2013.03.026

    Google Scholar 

  61. Sun L, Lu Q, Mao Z, Wang D (2015) Enhancement of photosynthetic action spectrum for 660 nm-featured phase-pure (Ba,Sr)3MgSi2O8: Eu2+, Mn2+ phosphor by spray-combustion synthesis. J Mater Sci-Mater Electron 26 (4):2647-2653. doi:10.1007/s10854-015-2739-3

    Google Scholar 

  62. Li X, Fan T (2011) Artificial Photosynthesis. Prog Chem 23 (9):1841-1853

    Google Scholar 

  63. Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9 (3):165-177. doi:10.1002/elsc.200900003

    Google Scholar 

  64. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefining 3 (4):431-440. doi:10.1002/bbb.159

    Google Scholar 

  65. Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-Cycle Assessment of Biodiesel Production from Microalgae. Environ Sci Technol 43 (17):6475-6481. doi:10.1021/es900705j

    Google Scholar 

  66. Zemke PE, Wood BD, Dye DJ (2010) Considerations for the maximum production rates of triacylglycerol from microalgae. Biomass Bioenerg 34 (1):145-151. doi:10.1016/j.biombioe.2009.10.012

    Google Scholar 

  67. Das S, Mukhopadhyay AK, Datta S, Basu D (2009) Prospects of microwave processing: An overview. Bull Mat Sci 32 (1):1-13. doi:10.1007/s12034-009-0001-4

    Google Scholar 

  68. Agrawal DK (1998) Microwave processing of ceramics. Curr Opin Solid State Mat Sci 3 (5):480-485. doi:10.1016/s1359-0286(98)80011-9

    Google Scholar 

  69. Yi Cai Q-FLJL, Kun Qiu, Peng Wang, Mei Ding, Da-Jian Wang (2012) Intensification of the Photosynthetic Action Spectrum of Ba3MgSi2O8:Eu2+, Mn2+ Phosphor with Metal-Enhanced Fluorescence. Electrochemical and Solid State Letters 15 (2) (1099-0062/2012/15(2)/P1/4/$28.00):P1-P4

    Google Scholar 

  70. Guo C, Huang D, Su Q (2006) Methods to improve the fluorescence intensity of CaS: Eu2+ red-emitting phosphor for white LED. Materials Science and Engineering: B 130 (1):189-193

    Google Scholar 

  71. Wu YC, Chen YC, Wang DY, Lee CS, Sun CC, Chen TM (2011) alpha-(Y,Gd)FS:Ce3+: a novel red-emitting fluorosulfide phosphor for solid-state lighting. J Mater Chem 21 (39):15163-15166. doi:10.1039/c1jm12819a

    Google Scholar 

  72. Lian S, Qi Y, Rong C, Yu L, Zhu A, Yin D, Liu S (2010) Effectively Leveraging Solar Energy through Persistent Dual Red Phosphorescence: Preparation, Characterization, and Density Functional Theory Study of Ca2Zn4Ti16O38:Pr3+. Journal of Physical Chemistry C 114 (15):7196-7204. doi:10.1021/jp911885c

    Google Scholar 

  73. Wang C, Tang K, Yang Q, An C, Hai B, Shen G, Qian Y (2002) Blue-light emission of nanocrystalline CaS and SrS synthesized via a solvothermal route. Chem Phys Lett 351 (5):385-390

    Google Scholar 

  74. Avci N, Cimieri I, Smet PF, Poelman D (2011) Stability improvement of moisture sensitive CaS:Eu2+ micro-particles by coating with sol–gel alumina. Opt Mater 33 (7):1032-1035. doi:10.1016/j.optmat.2010.07.021

    Google Scholar 

  75. Avci N, Musschoot J, Smet PF, Korthout K, Avci A, Detavernier C, Poelman D (2009) Microencapsulation of Moisture-Sensitive CaS:Eu2+ Particles with Aluminum Oxide. Journal of The Electrochemical Society 156 (11):J333. doi:10.1149/1.3211959

    Google Scholar 

  76. Dong X, Lu Q, Lu Z, Mao Z, Wang D (2014) Investigation of the red-shift of the emission of microwave solvothermally-grown europium doped calcium sulphide crystals. J Rare Earths 32 (8):702-708

    Google Scholar 

  77. Uheda K, Hirosaki N, Yamamoto Y, Naito A, Nakajima T, Yamamoto H (2006) Luminescence properties of a red phosphor, CaAlSiN3: Eu2+, for white light-emitting diodes. Electrochemical and Solid State Letters 9 (4):H22-H25. doi:10.1149/1.2173192

    Google Scholar 

  78. Xie RJ, Hirosaki N (2007) Silicon-based oxynitride and nitride phosphors for white LEDs - A review. Sci Technol Adv Mater 8 (7-8):588-600. doi:10.1016/j.stam.2007.08.005

    Google Scholar 

  79. Mueller-Mach R, Mueller GO, Krames MR, Shchekin OB, Schmidt PJ, Bechtel H, Chen CH, Steigelmann O (2009) All-nitride monochromatic amber-emitting phosphor-converted light-emitting diodes. Physica Status Solidi-Rapid Research Letters 3 (7-8):215-217. doi:10.1002/pssr.200903188

    Google Scholar 

  80. Xie; R-J, Li; YQ, Hirosaki; N, Yamamoto H (eds) (2011) Nitride Posphors and Solid-State Lighting. CRC Press

    Google Scholar 

  81. Zhu J, Wang L, Zhou T, Cho Y, Suehiro T, Takeda T, Lu M, Sekiguchi T, Hirosaki N, Xie R-J (2015) Moisture-induced degradation and its mechanism of (Sr,Ca)AlSiN3:Eu2+, a red-color-converter for solid state lighting. Journal of Materials Chemistry C 3 (13):3181-3188. doi:10.1039/c4tc02824d

    Google Scholar 

  82. Wang J, Zhang H, Lei B, Xia Z, Dong H, Liu Y, Zheng M, Xiao Y (2015) Enhanced photoluminescence and phosphorescence properties of red CaAlSiN3:Eu2+ phosphor via simultaneous UV-NIR stimulation. Journal of Materials Chemistry C 3 (17):4445-4451. doi:10.1039/c5tc00236b

    Google Scholar 

  83. Liu G, Tian Z, Chen Z, Wang H, Zhang Q, Li Y (2015) CaAlSiN3:Eu2+ phosphors bonding with bismuth borate glass for high power light excitation. Opt Mater 40:63-67. doi:10.1016/j.optmat.2014.11.047

    Google Scholar 

  84. Kim HS, Machida K-i, Horikawa T, Hanzawa H (2015) Luminescence properties of CaAlSiN3:Eu2+ phosphor prepared by direct-nitriding method using fine metal hydride powders. Journal of Alloys and Compounds 633:97-103. doi:10.1016/j.jallcom.2015.01.069

    Google Scholar 

  85. Suehiro T, Xie R-J, Hirosaki N (2014) Gas-Reduction-Nitridation Synthesis of CaAlSiN3:Eu2+ Fine Powder Phosphors for Solid-State Lighting. Industrial & Engineering Chemistry Research 53 (7):2713-2717. doi:10.1021/ie4038455

    Google Scholar 

  86. Kim HS, Machida K-i, Itoh M, Hanzawa H (2014) Synthesis and Luminescence Properties of (Sr, Ca)AlSiN3:Eu2+ Phosphors under Atmospheric-Pressure. Ecs Journal of Solid State Science and Technology 3 (12):R234-R237. doi:10.1149/2.0061412jss

    Google Scholar 

  87. Kim HS, Machida K-i, Horikawa T, Hanzawa H (2014) Carbothermal Reduction Synthesis Using CaCN2 as Calcium and Carbon Sources for CaAlSiN3:Eu2+ Phosphor and Their Luminescence Properties. Chem Lett 43 (4):533-534. doi:10.1246/cl.131050

    Google Scholar 

  88. Jo DS, Senthil K, Song YH, Masaki T, Yoon D-H (2014) Synthesis of CaSiAlN3: Eu2+ phosphor by liquid phase precursor method. J Ceram Process Res 15 (4):259-261

    Google Scholar 

  89. Hu W-W, Cai C, Zhu Q-Q, Xu X, Hao L-Y, Agathopoulos S (2014) Preparation of high performance CaAlSiN3:Eu2+ phosphors with the aid of BaF2 flux. Journal of Alloys and Compounds 613:226-231. doi:10.1016/j.jallcom.2014.06.026

    Google Scholar 

  90. Cho J, Bang BK, Jeong SJ, Kim CH (2014) Synthesis of red-emitting nanocrystalline phosphor CaAlSiN3:Eu2+ derived from elementary constituents. Rsc Advances 4 (44):23218-23222. doi:10.1039/c4ra02550d

    Google Scholar 

  91. Kubus M, Meyer HJ (2013) A Low-Temperature Synthesis Route for CaAlSiN3 Doped with Eu2+. Zeitschrift Fur Anorganische Und Allgemeine Chemie 639 (5):669-671. doi:10.1002/zaac.201200533

    Google Scholar 

  92. Piao X, Machida K-i, Horikawa T, Yun B (2010) Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties. Journal of Luminescence 130 (1):8-12. doi:10.1016/j.jlumin.2009.03.008

    Google Scholar 

  93. Lei B, Machida K-i, Horikawa T, Hanzawa H (2010) Synthesis and Photoluminescence Properties of CaAlSiN3:Eu2+ Nanocrystals. Chem Lett 39 (2):104-105. doi:10.1246/cl.2010.104

    Google Scholar 

  94. Watanabe H, Imai M, Kijima N (2009) Nitridation of AEAlSi for Production of AEAlSiN3:Eu2+ Nitride Phosphors (AE=Ca, Sr). J Am Ceram Soc 92 (3):641-648. doi:10.1111/j.1551-2916.2009.02945.x

    Google Scholar 

  95. Li J, Watanabe T, Wada H, Setoyama T, Yoshimuraz M (2009) Synthesis of Eu-Doped CaAlSiN3 from Ammonometallates: Effects of Sodium Content and Pressure. J Am Ceram Soc 92 (2):344-349. doi:10.1111/j.1551-2916.2008.02883.x

    Google Scholar 

  96. Watanabe H, Wada H, Seki K, Itoua M, Kijima N (2008) Synthetic method and luminescence properties of SrxCal(1-x)AlSiN3: Eu2+ mixed nitride phosphors. Journal of the Electrochemical Society 155 (3):F31-F36. doi:10.1149/1.2829880

    Google Scholar 

  97. Li J, Watanabe T, Sakamoto N, Wada H, Setoyama T, Yoshimura M (2008) Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures. Chem Mater 20 (6):2095-2105. doi:10.1021/cm071612m

    Google Scholar 

  98. Uheda K, Hirosaki N, Yamamoto H (2006) Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode. Phys Status Solidi A 203 (11):2712-2717. doi:10.1002/pssa.200669576

    Google Scholar 

  99. Piao XQ, Horikawa T, Hanzawa H, Machida K (2006) Photoluminescence properties of Ca2Si5N8: Eu2+ nitride phosphor prepared by carbothermal reduction and nitridation method. Chem Lett 35 (3):334-335. doi:10.1246/cl.2006.334

    Google Scholar 

  100. Zhou Q, Zhou Y, Liu Y, Luo L, Wang Z, Peng J, Yan J, Wu M (2015) A new red phosphor BaGeF6:Mn4+: hydrothermal synthesis, photo-luminescence properties, and its application in warm white LED devices. Journal of Materials Chemistry C 3 (13):3055-3059. doi:10.1039/c4tc02956a

    Google Scholar 

  101. Wei L-L, Lin CC, Fang M-H, Brik MG, Hu S-F, Jiao H, Liu R-S (2015) A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications. Journal of Materials Chemistry C 3 (8):1655-1660. doi:10.1039/c4tc02551b

    Google Scholar 

  102. Wang Y, Wen T, Tang L, Yang L, Yang W, Zhao Y (2015) Impact of hydrostatic pressure on the crystal structure and photoluminescence properties of Mn4+-doped BaTiF6 red phosphor. Dalton Transactions 44 (16):7578-7585. doi:10.1039/c5dt00426h

    Google Scholar 

  103. Oh JH, Kang H, Eo YJ, Park HK, Do YR (2015) Synthesis of narrow-band red-emitting K2SiF6:Mn4+ phosphors for a deep red monochromatic LED and ultrahigh color quality warm-white LEDs. Journal of Materials Chemistry C 3 (3):607-615. doi:10.1039/c4tc02042a

    Google Scholar 

  104. Hoang-Duy N, Lin CC, Fang M-H, Liu R-S (2014) Synthesis of Na2SiF6:Mn4+ red phosphors for white LED applications by co-precipitation. Journal of Materials Chemistry C 2 (48):10268-10272. doi:10.1039/c4tc02062f

    Google Scholar 

  105. Wang B, Lin H, Xu J, Chen H, Wang Y (2014) CaMg2Al16O27:Mn4+-based Red Phosphor: A Potential Color Converter for High-Powered Warm W-LED. Acs Applied Materials & Interfaces 6 (24):22905-22913. doi:10.1021/am507316b

    Google Scholar 

  106. Lu W, Lv W, Zhao Q, Jiao M, Shao B, You H (2014) A Novel Efficient Mn4+ Activated Ca14Al10Zn6O35 Phosphor: Application in Red-Emitting and White LEDs. Inorg Chem 53 (22):11985-11990. doi:10.1021/ic501641q

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support by the National Natural Science Foundation of China (nos. 21076161, 50802062, 50872091, and 51102265), Program of Discipline Leader of Colleges and Universities, and the Thousand Talents Plan, Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajian Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, D., Mao, Z., Fahlman, B.D. (2016). Phosphors with a 660-nm-Featured Emission for LED/LD Lighting in Horticulture. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_3

Download citation

Publish with us

Policies and ethics