Skip to main content

Phosphors for Field Emission Display: Recent Advances in Synthesis, Improvement, and Luminescence Properties

  • Chapter
  • First Online:
Book cover Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Abstract

Field emission displays (FEDs) have been considered as one of the most promising next-generation flat panel display (FPD) technologies due to its excellent display performances and low energy consumption. Phosphors are irreplaceable components for FEDs. The exploration of highly efficient low-voltage FED phosphors is the focus of enhancing energy efficiency and realizing high-quality display. This chapter summarizes the recent progress in chemical synthesis and improvement of rare earth and transition metal ion-activated inorganic FEDs phosphors with powder and thin film forms. Discussion is focused on the modification of morphology, size, surface, composition, conductivity of phosphors, and corresponding effects on their cathodoluminescent properties. Special emphases are given to the selection of host and luminescent centers, the adjustment of emission colors through doping concentration optimization, energy transfer, mono- or codoping activator ions, the improvement of chromaticity, color stability and color gamut as well as the saturation behavior and the degradation behavior of phosphors under the excitation of low-voltage electron beam. The authors also speak about the research prospects and future directions of FED phosphors and give some recommendations to facilitate the further exploration of new and highly efficient low-voltage FED phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waser, R (2003) Nanoelectronics and Information Technology. chapter 39, Wiley-Vch, Weinheim, Germany

    Google Scholar 

  2. Holloway, PH, Trottier, TA, Abrams B, Kondoleon C, Jones SL, Sebastian JS, Thomes WJ, Swart H (1999) Advances in field emission displays phosphors. J Vac Sci Technol B 17: 758–764

    Google Scholar 

  3. Höppe, HA (2009) Recent Developments in the Field of Inorganic Phosphors. Angew Chem Int Ed 48: 3572–3582,

    Google Scholar 

  4. Jüstel T, Nikol H, Ronda C (1998) New Developments in the Field of Luminescent Materials for Lighting and Displays. Angew Chem Int Ed 37: 3084–3103

    Google Scholar 

  5. Hao JH, Gao J, Cocivera M (2003) Green, blue, and yellow cathodoluminescence of Ba2B5O9Cl thin-films doped with Tb3+, Tm3+, and Mn2+. Appl Phys Lett 82: 2224–2226

    Google Scholar 

  6. Liu TC, Kominami H, Greer HF, Zhou W, Nakanishi Y, Liu RS (2012) Blue emission by interstitial site occupation of Ce3+ in AlN. Chem Mater 24: 3486–3492

    Google Scholar 

  7. Zhang QH, Wang J, Yeh CW, Ke WC, Liu RS, Tang JK, Xie MB, Liang HB, Su Q (2010) Structure, composition, morphology, photoluminescence and cathodoluminescence properties of ZnGeN2 and ZnGeN2:Mn2+ for field emission displays. Acta Mater 58: 6728–6735

    Google Scholar 

  8. Zhang S, Liang HB, Liu CM, Qi ZM, Shao T, Wang YY (2013) High color purity red-emission of NaGdTiO4:Pr3+ Via quenching of 3P0 emission under low-voltage cathode ray excitation. Opt Lett 38: 612–614

    Google Scholar 

  9. Jing YD, Zhang F, Summers CJ, Wang ZL (1999) Synthesis and properties of Sr2CeO4 blue emission powder phosphor for field emission displays. Appl Phys Lett 74: 1677–1679

    Google Scholar 

  10. Itoh M, Ozawa L (2006) Cathodoluminescent phosphors. Annu Rep Prog Chem Sect C 102:12–42

    Google Scholar 

  11. Han JI, Kwak MG, Park YK, Lim SC, Lee IK, Cho KI, Yoo HJ (1998) Experimental and theoretical considerations on evacuation of vacuum package for field emission display. J Vac Sci Technol B 16: 1236–1238

    Google Scholar 

  12. Psuja P, Hreniak D, Strek W (2007) Rare-Earth Doped Nanocrystalline Phosphors for Field Emission Displays. J Nanomater 2007: 81350

    Google Scholar 

  13. Wang ZL, Chan HLW, Li HL, Hao JH (2008) Highly efficient low-voltage cathodoluminescence of LaF3 :Ln3+ (Ln = Eu3+, Ce3+, Tb3+) spherical particles. Appl Phys Lett 93: 141106

    Google Scholar 

  14. Sharma AK, Son KH, Han BY, Sohn KS (2010) Simultaneous optimization of luminance and color chromaticity of phosphors using a nondominated sorting genetic algorithm. Adv Funct Mater 20: 1750-1755

    Google Scholar 

  15. Blasse G, Grabmaier BC (1994) Luminescence Materials (Springer-Verlag, Berlin, Heideberg), ch. 4–5

    Google Scholar 

  16. Shi L, Huang YL, Seo HJ (2010) Emission Red Shift and Unusual Band Narrowing of Mn2+ in NaCaPO4 Phosphor. J Phys Chem A 114: 6927–6934

    Google Scholar 

  17. Liu XM, J. Lin (2007) Enhanced luminescence of gadolinium niobates by Bi3+ doping for field emission displays. J Lumin 122–123: 700–703

    Google Scholar 

  18. Yamashita T, Ueda K (2007) Blue photoluminescence in Ti-doped alkaline-earth stannates. J Solid State Chem 180: 1410–141319

    Google Scholar 

  19. Hou ZY, Li GG, Lian HZ, Lin J (2012) One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application. J Mater Chem 22: 5254–5276

    Google Scholar 

  20. Shang MM, Li GG, Yang DM, X. J. Kang, Peng C, Lin J (2012) Luminescence properties of Mn2+-doped Li2ZnGeO4 as an efficient green phosphor for field-emission displays with high color purity. Dalton Trans 41: 8861–8868

    Google Scholar 

  21. Zhang F L, Yang S, Stoffers C, Penczek J, Yocom PN, Zaremba D, Wagner BK, Summers CJ (1998) Low voltage cathodoluminescence properties of blue emitting SrGa2S4:Ce3+ and ZnS:Ag,Cl phosphors. Appl Phys Lett 72: 2226–2228.

    Google Scholar 

  22. Vecht A, Gibbons C, Davies D, Jing X, Marsh P, Reland T, Silver J, Nowport A, Barber D (1999) Engineering phosphors for field emission displays. J Vac Sci Technol B 17: 750–757

    Google Scholar 

  23. Guo P, Zhao F, Li G, Liao F, Tian S, Jing X (2003) Novel phosphors of Eu3+, Tb3+ or Bi3+ activated Gd2GeO5. J Lumin 105: 61–67

    Google Scholar 

  24. Nagpure IM, Pitale SS, Coetsee E, Ntwaeaborwa OM, Terblans JJ, Swart HC (2011) Low voltage electron induced cathodoluminescence degradation and surface characterization of Sr3(PO4)2:Tb phosphor. Appl Surf Sci 257: 10147–10155

    Google Scholar 

  25. Srivastava AM, Ronda CR (2003) Phosphors. Electrochem Soc Interface 12: 48–51

    Google Scholar 

  26. Liu X, Lin C, Lin J (2007) White light emission from Eu3+ in CaIn2O4 host lattices. Appl Phys Lett 90: 081904

    Google Scholar 

  27. Wakefield G, Holland E, Dobson P J, Hutchison JL (2000) Luminescence properties of nanocrystalline Y2O3:Eu. Adv Mater 13: 1557–1560

    Google Scholar 

  28. Yang SH, Hsueh TJ, Chang SJ (2005) Cathodoluminescence of a white ZnGa2O4/ZnO phosphor screen. J Electrochem Soc 152: H191–H195

    Google Scholar 

  29. Jang HS, Kang JH, Won YH, Lee S, Jeon DY (2007) Mechanism for strong yellow emission of Y3Al5O12:Ce3+ phosphor under electron irradiation for the application to field emission backlight units. Appl Phys Lett 90: 071908

    Google Scholar 

  30. Li GG, Zhang X, Peng C, Shang MM, Geng DL, Cheng ZY, Lin J (2011) Cyan-emitting Ti4+- and Mn2+-coactivated Mg2SnO4 as a potential phosphor to enlarge the color gamut for field emission display. J Mater Chem 21: 6477–6479

    Google Scholar 

  31. Lin CH, Chiou BS, Chang CH, Lin JD (2003) Preparation and cathodoluminescence of ZnO phosphor. Mater Chem Phys 77: 647–654

    Google Scholar 

  32. Li GG, Peng C, Li CX, Yang PP, Hou ZY, Fan Y, Lin J (2009) Shape-controllable synthesis and morphology-dependent luminescence properties of GaOOH:Dy3+ and β-Ga2O3:Dy3+. Inorg Chem 49: 1449–1457

    Google Scholar 

  33. Xu XG, Chen J, Deng SZ, Xu NS, Lin J (2010) Cathodoluminescent properties of nanocrystalline Lu3Ga5O12:Tb3+ phosphor for field emission display application. J Vac Sci Technol B 28: 490–494

    Google Scholar 

  34. Liu BD, Bando Y, Dierre B, Sekiguchi T, Tang CC, Mitome M, Wu AM, Jiang X, Golberg D (2009) The synthesis, structure and cathodoluminescence of ellipsoid-shaped ZnGa2O4 nanorods. Nanotechnology 20: 365705–365711

    Google Scholar 

  35. Liu XM, Li CX, Quan ZW, Cheng ZY, Lin J (2007) Tunable Luminescence Properties of CaIn2O4:Eu3+ Phosphors. J Phys Chem C 111: 16601–16607

    Google Scholar 

  36. Liu XM, Lin CK, Luo Y, Lin J (2007) Host-sensitized luminescence of Dy3+, Pr3+, Tb3+ in polycrystalline SrIn2O4 for field emission displays. J Electrochem Soc 154: J21–J27

    Google Scholar 

  37. Jiao H, Wang JG, Liao FH, Tian SJ, Jing XP (2004) Cathodoluminescence of Eu3+, Tb3+, and Tb3+-Eu3+ pair-activated Zn3Ta2O8. J Electrochem Soc 151: H49–H51

    Google Scholar 

  38. Shang MM, Li GG, Yang DM, Kang XJ, Peng C, Cheng ZY, Lin J (2011) (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Trans 40: 9379–9387

    Google Scholar 

  39. Xu XR, Su MZ (2014) Luminescence Science, Luminescent Materials (in Chinese); Chemical Industry Publisher: Beijing

    Google Scholar 

  40. Li GG, Hou ZY, Peng C, Wang WX, Cheng ZY, Li CX, Lian HZ, Lin J (2010) Electrospinning derived one-dimensional LaOCl:Ln3+ (Ln = Eu/Sm, Tb, Tm) nanofibers, nanotubes and microbelts with multicolor-tunable emission properties. Adv Funct Mater 20: 3446–3456

    Google Scholar 

  41. Li GG, Li CX, Zhang CM, Cheng ZY, Quan ZW, Peng C, Lin J (2009) Tm3+ and/or Dy3+ doped LaOCl nanocrystalline phosphors for field emission displays. J Mater Chem 19: 8936–8943

    Google Scholar 

  42. Li GG, Peng C, Zhang CM, Xu, ZH, Shang MM, Yang DM, Kang XJ, Wang WX, Li CX, Cheng ZY, Lin J (2010) Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties. Inorg Chem 49: 10522–10535

    Google Scholar 

  43. Liu XM, Y. Luo, Lin J (2006) Synthesis and characterization of spherical Sr2CeO4 phosphors by spray pyrolysis for field emission displays, J Crystal Growth 290: 266–271

    Google Scholar 

  44. Geng DL, Li GG, Shang MM, Peng C, Zhang Y, Cheng ZY, Lin J (2012) Nanocrystalline CaYAlO4:Tb3+/Eu3+ as promising phosphors for full-color field emission displays. Dalton Trans 41: 3078–3086

    Google Scholar 

  45. Zhang Y, Geng DL, Shang MM, X. Zhang, Li XJ, Cheng ZY, Lian HZ, Lin J (2013) Soft-chemical synthesis and tunable luminescence of Tb3+, Tm3+/Dy3+-doped SrY2O4 phosphors for field emission displays. Dalton Trans 42: 4799–4808

    Google Scholar 

  46. Mao YB, Tran T, Guo X, Huang JY, Shih K Wang KL, Chang JP (2009) Luminescence of nanocrystalline erbium-doped yttria. Adv Funct Mater 19: 748–754

    Google Scholar 

  47. Lin J, Yu M, Lin CK, Liu XM (2007) Multiform oxide optical materials via the versatile Pechini-type Sol-Gel process: synthesis and characteristics. J Phys Chem C 111: 5835–5845

    Google Scholar 

  48. Liu XM, Zou J P, Lin J (2009) Nanocrystalline LaAlO3:Sm3+ as a promising yellow phosphor for field emission displays. J Electrochem Soc 156: P43–P47

    Google Scholar 

  49. Liu XM, Lin J (2007) Nanocrystalline LaGaO3:Tm3+ as an efficient blue phosphor for field emission displays with high color purity. Appl Phys Lett 90: 184108

    Google Scholar 

  50. Liu XM, ZhuL, Wang LL, Yu CC, Lin J (2008) Synthesis and luminescent properties of Lu3Ga5O12:RE3+ (RE = Eu, Tb, and Pr) nanocrystalline phosphors via sol-gel process. J Electrochem Soc 155: P21-P27

    Google Scholar 

  51. Li GG, Xu XG, Peng C, Shang MM, Geng DL, Cheng ZY, Chen J, Lin J (2011) Yellow-emitting NaCaPO4:Mn2+ phosphor for field emission displays. Opt Exp 19: 16423–16431

    Google Scholar 

  52. Geng DL, Shang MM, Zhang Y, Lian HZ, Lin J (2013) Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A = Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors. Inorg Chem 52: 13708–13718

    Google Scholar 

  53. Geng DL, Shang MM, Yang DM, Zhang Y, Cheng ZY, Lin J (2012) Tunable luminescence and energy transfer properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) phosphors with high quantum efficiencies. J Mater Chem 22: 23789–23798

    Google Scholar 

  54. Shang MM, Geng DL, Yang DM, Kang XJ, Zhang Y, Lin J (2013) Luminescence and energy transfer properties of Ca2Ba3(PO4)3Cl and Ca2Ba3(PO4)3Cl:A (A = Eu2+/Ce3+/Dy3+/Tb3+) under UV and low-voltage electron beam excitation. Inorg Chem 52: 3102–3112

    Google Scholar 

  55. Shang MM, Geng DL, Zhang Y, Li GG, Yang DM, Kang XJ, Lin J (2012) Luminescence and energy transfer properties of Ca8Gd2(PO4)6O2:A (A = Ce3+/Eu2+/Tb3+/Dy3+/Mn2+) phosphors. J Mater Chem 22: 19094–19104

    Google Scholar 

  56. Wakefield G, Williams DM, Harris CG, Dobson PJ (2000) Nanocrystalline phosphors for low voltage excitation applications. SID Symposium Digest of Technical Papers 31: 691-693

    Google Scholar 

  57. Jung HK, Sohn KS, Sung BY, Park HD (2000) High Luminance Zn2SiO4:Mn phosphors prepared by homogeneous precipitation method. J Soc Inf Disp 1: 35-41

    Google Scholar 

  58. Silver J, Withnall R, Lipman A, Ireland TG, Fern GR (2007) Low-voltage cathodoluminescent red emitting phosphors for field emission displays. J Lumin 122-123: 562-566

    Google Scholar 

  59. Shang MM, Geng DL, Kang XJ, Yang DM, Zhang Y, Lin J (2012) Hydrothermal derived LaOF:Ln3+ (Ln = Eu, Tb, Sm, Dy, Tm, and/or Ho) nanocrystals with multicolor-tunable emission properties. Inorg Chem 51: 11106–11116

    Google Scholar 

  60. Yang J, Li CX, Cheng ZY, Zhang XM, Quan ZW, Zhang CM, Lin J (2007) Size-tailored synthesis and luminescent properties of one-dimensional Gd2O3:Eu3+ nanorods and microrods. J Phys Chem C 111: 18148–18154

    Google Scholar 

  61. Yang J, Zhang CM, Wang LL, Hou ZY, Huang SS, Lian HZ, Lin J (2008) Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. J Phys Chem C 112: 12777-12785

    Google Scholar 

  62. Dong GP, Xiao XD, LiuXF, Qian B, Ma ZJ, Chen DP, Qiu JR (2009) Preparation and optical properties of long afterglow europium-doped Ca(Sr)Al2Si2O8 electrospun nanofibers. J Electrochem Soc 156: J356–J360

    Google Scholar 

  63. Peng C, Hou ZY, Zhang CM, Li GG, Lian HZ, Cheng ZY, Lin J (2010) Synthesis and luminescent properties of CaTiO3:Pr3+ microfibers prepared by electrospinning method. Opt Exp 18: 7543–7553

    Google Scholar 

  64. Song HW, Yu LX, Lu SZ (2005) Improved photoluminescent properties in one-dimensional LaPO4:Eu3+ nanowires. Opt Lett 30: 483–485

    Google Scholar 

  65. Hou ZY, Yang PP, Li CX,Wang LL, Lian HZ, Quan ZW, Lin J (2008) Preparation and Luminescence Properties of YVO4:Ln and Y(V, P)O4:Ln (Ln = Eu3+, Sm3+, Dy3+) Nanofibers and Microbelts by Sol-Gel/Electrospinning Process. Chem Mater 20: 6686–6696

    Google Scholar 

  66. Yu M, Lin J, Fang J (2005) Silica spheres coated with YVO4:Eu3+ layers via Sol-Gel process: A simple method to obtain spherical core-shell phosphors. Chem Mater 17: 1783–1791

    Google Scholar 

  67. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26: 62–69

    Google Scholar 

  68. Lin CK, Kong DY, Liu XM, Wang H, Yu M, Lin J (2007) Monodisperse and Core-Shell-Structured SiO2@YBO3:Eu3+ Spherical Particles: Synthesis and Characterization. Inorg Chem 46: 2674–2681

    Google Scholar 

  69. Tan SY, Yang PP, Li CX, Wang WX, Wang J, Zhang ML, Jing XY, Lin J (2010) Preparation, characterization and luminescent properties of spherical CaTiO3:Pr3+ phosphors by spray pyrolysis. Solid State Sci 12: 624–629

    Google Scholar 

  70. Jung KY, Kim EJ, Kang YC (2004) Morphology control and optimization of luminescent property of YBO3:Tb phosphor particles prepared by spray pyrolysis. J Electrochem Soc 151: H69-H73

    Google Scholar 

  71. Liu XM, Lin J (2008) LaGaO3:A (A = Sm3+ and/or Tb3+) as promising phosphors for field emission displays. J Mater Chem 18: 221–228

    Google Scholar 

  72. Shang MM, Li GG, Yang DM, Kang XJ, Zhang CM, Lin J (2011) Red emitting Ca2GeO4:Eu3+ phosphors for field emission displays. J Electrochem Soc 158: J125–J131

    Google Scholar 

  73. Yang SH (2004) Indium- and tungsten-doped ZnGa2O4 phosphor. J Electron Mater 33: L1-L4

    Google Scholar 

  74. Kim JY, Jeon DY, Yu I, Yang HG (2000) A study on correlation of low voltage cathodoluminescent properties with electrical conductivity of In2O3-coated ZnGa2O4:Mn phosphors. J Electrochem Soc 147: 3559-3563

    Google Scholar 

  75. Xie LP, Song HW, Wang Y, Xu W, Bai X, Dong B (2010) Influence of concentration effect and Au coating on photoluminescence properties of YVO4:Eu3+ nanoparticle colloids. J Phys Chem C 114: 9975-9980

    Google Scholar 

  76. Zhang MC, Wang XJ, Ding H, Li HL, Pan LK, Sun Z (2011) The enhanced low-voltage cathodoluminescent properties of spherical Y2O3:Eu3+ phosphors coated with In2O3 and its application to field-emission displays. Int J Appl Ceram Technol 8: 752–758

    Google Scholar 

  77. Do YR, Park DH, Yang HG, Park W, Wagner BK, Yasuda K, Summers CJ (2001) Uniform nanoscale SiO2 encapsulation of ZnS phosphors for improved aging properties under low voltage electron beam excitation. J Electrochem Soc 148: G548-G551

    Google Scholar 

  78. Pitale SS, Kumar V, Nagpure IM, Ntwaeaborwa OM, Coetsee E, Swart HC (2011) Cathodoluminescent properties and surface characterization of bluish-white LiAl5O8:Tb phosphor. J Appl Phys 109: 013105

    Google Scholar 

  79. Holloway PH, Swart HC, Ntwaeaborwa OM (2013) Electro-stimulated surface chemical reactions on phosphors. J Vac Sci Technol A 31, 050808.

    Google Scholar 

  80. Rag D, Park D, Kim Y (2004) Al2O3 Nanoencapsulation of BaMgAl10O17: Eu2+ phosphors for improved aging properties in plasma display panels. J Electrochem Soc 151: H210-H212

    Google Scholar 

  81. Song YH, Xu XC, Zou HF, Sheng Y, You HP (2012) MSi2O2-δN2+2/3δ:Eu (M = Sr, Ba) phosphors for field emission displays. J Alloys Comp 513: 86-90

    Google Scholar 

  82. Hetaba W, Mogilatenko A, Neumann W (2010) Electron beam-induced oxygen desorption in γ-LiAlO2. Micron 41: 479-483

    Google Scholar 

  83. Li GG, Li CX, Hou ZY, Peng C, Lin J (2009) Nanocrystalline LaOCl: Tb3+/Sm3+ as promising phosphors for full-color field-emission displays. Opt Lett 34: 3833–3835

    Google Scholar 

  84. Hirosaki N, Xie RJ, Inoue K, Sekiguchi T, Dierre B, Tamura K (2007) Blue-emitting AlN:Eu2+ nitride phosphor for field emission displays. Appl Phys Lett 91: 061101

    Google Scholar 

  85. Xie MB, Liang HB, Su Q, HuangY , Gao ZH, Tao Y (2011) Intense cyan-emitting of Li2CaSiO4:Eu2+ under low-voltage cathode ray excitation. Electrochem Solid-State Lett 14: J69-J72

    Google Scholar 

  86. Wang DY, Huang CM, Wu YC, Chen TM (2011) BaZrSi3O9:Eu2+: A cyan-emitting phosphor with high quantum efficiency for white light-emitting diodes. J Mater Chem 21: 10818-10822

    Google Scholar 

  87. Bachmann V, Ronda C, Ceckler O, Schnick W, Meijerink A (2009) Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs. Chem Mater 21: 316-325

    Google Scholar 

  88. Li GG, Peng C, Li CX, Yang PP, Hou ZY, FanY, Lin J (2011) Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: Potential single-phase white/yellow-emitting phosphors. J Mater Chem 21: 13334–13344

    Google Scholar 

  89. Huang CM, Wu PJ, Lee JF, Chen TM (2011) (Ca,Mg,Sr)9Y(PO4)7:Eu2+,Mn2+: Phosphors for white-light near-UV LEDs through crystal field tuning and energy transfer. J Mater Chem 21: 10489–10495

    Google Scholar 

  90. Liu XM, Yan LS, Lin J (2009) Tunable photoluminescence and cathodoluminescence properties of Eu3+-doped LaInO3 nanocrystalline phosphors. J Electrochem Soc 156: P1–P6

    Google Scholar 

  91. Li GG, Geng DL, Shang MM, Zhang Y, Peng C, Cheng ZY, Lin J (2011) Color tuning luminescence of Ce3+/Mn2+/Tb3+-triactivated Mg2Y8(SiO4)6O2 via energy transfer: Potential single-phase white-light-emitting phosphors. J Phys Chem C 115: 21882–21892

    Google Scholar 

  92. Shang MM, Li CX, Lin J (2013) How to produce white light in a single-phase host? Chem Soc Rev 43: 1372-1386

    Google Scholar 

  93. Caldiño U (2003) On the Ce-Mn clustering in CaF2 in which the Ce3+→Mn2+ energy transfer occurs. J Phys Condens Matter 15: 3821–3830

    Google Scholar 

  94. Zhang CM, Huang SS, Yang DM, Kang XJ, Shang MM, Peng C, Lin J (2010) Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite through combining emissions and modulation of excitation: A novel strategy to white light emission. J Mater Chem 20: 6674–6680

    Google Scholar 

  95. Huang CM, Chen TM (2011) A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3+,Mn2+,Tb3+ phosphor for UV-light emitting diodes. J Phys Chem C 115: 2349–2355

    Google Scholar 

  96. Geng DL, Li GG, Shang MM, Yang DM, Zhang Y, Cheng ZY, Lin J (2012) Color tuning via energy transfer in Sr3In(PO4)3:Ce3+/Tb3+/Mn2+ phosphors. J Mater Chem 22: 14262–14271

    Google Scholar 

  97. Liu YF, Zhang X, Hao ZD, Wang XJ, Zhang JH (2011) Tunable full-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+ phosphor via charge compensation and energy transfer. Chem Commun 47: 10677-10679

    Google Scholar 

  98. Choe JY, Ravichandran D, Biomquist SM, Morton DC, Kirchner KW, Ervin MH, Lee U (2001) Alkoxy sol-gel derived Y3-xAl5O12:Tbx thin films as efficient cathodoluminescent phosphors. Appl Phys Lett 78: 3800–3802

    Google Scholar 

  99. Li W, Mao DS, Zhang FM, Liu XH, Zou SC, Zhu YK, Li Q, Xu JF (2000) ZnO:Zn phosphor thin films prepared by ion beam sputtering. J Vac Sci Technol A 18: 2295–2301

    Google Scholar 

  100. Yum JH, Sung YE (2004) Full color screen by EPD combined with photolithography for flat panel displays. J Electrochem Soc 151: H27–H32.

    Google Scholar 

  101. Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Sol-Gel soft lithography. Chem Mater 14: 2224–2231

    Google Scholar 

  102. Yu M, Lin J, Fu J, Zhang HJ, Han YC (2003) Sol–gel synthesis and photoluminescent properties of LaPO4:A (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J Mater Chem 13: 1413–1419

    Google Scholar 

  103. Pang ML, Shen WY, Lin J (2005) Enhanced photoluminescence of Ga2O3:Dy3+ phosphor films by Li+ doping. J Appl Phys 97: 033511

    Google Scholar 

  104. Jang JE, Gwak JH, Jin YW, Lee SJ, Park SH, Jung JE, Lee NS, Kim JM (2000) High resolution phosphor screening method for full-color field emission display applications. J Vac Sci Technol B 18: 1106–1110

    Google Scholar 

  105. Ying GY, Hu WB, Qiu Y (2002) In The Technology of Flat Panel Displays; Fu, J. Ed.; Post & Telecom Press: Bejing, China

    Google Scholar 

  106. Xia Y, Whiteside GM (1998) Soft lithography. Annu Rev Mater Sci 28: 153–184

    Google Scholar 

  107. Pang ML, Lin J, Cheng ZY, Fu J, Xing RB, Wang SB (2003) Patterning and luminescent properties of nanocrystalline Y2O3:Eu3+ phosphor films by sol–gel soft lithograph. Mater Sci Eng B 100: 124–131

    Google Scholar 

  108. Pang ML, Lin J, Fu J, Xing RB, Luo CX, Han YC (2003) Preparation, patterning and luminescent properties of nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films via Pechini sol-gel soft lithography. Opt Mater 23: 547–558

    Google Scholar 

  109. Cheng ZY, Xing RB, Hou ZY, Huang SS, Lin J (2010) Patterning of light-emitting YVO4:Eu3+ thin films via ink-jet printing. J Phys Chem C 114: 9883–9888

    Google Scholar 

  110. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Mater 4: 703–713

    Google Scholar 

  111. Singh M, Haverinen HM, Dhagat P, Jabbour GE (2010) Inkjet printing-process and its applications. Adv Mater 22: 673–685

    Google Scholar 

  112. Xia YJ, Friend RH (2007) Nonlithographic patterning through inkjet printing via holes. Appl Phys Lett 90: 253513

    Google Scholar 

  113. Dijksman JF, Duineveld PC, Hack MJJ, Pierik A, Rensen J, Rubingh JE, Schram I, Vernhout MM (2007) Precision ink jet printing of polymer light emitting displays. J Mater Chem 17: 511–522

    Google Scholar 

  114. Wang WX, Cheng ZY, Yang PP, Hou ZY, Li CX, Li GG, Dai YL, Lin J (2011) Patterning of YVO4:Eu3+ luminescent films by soft lithography. Adv Funct Mater 21: 456–463

    Google Scholar 

  115. Wang WX, Yang PP, Cheng ZY, Hou ZY, Li CX, Lin J (2011) Patterning of red, green, and blue luminescent films based on CaWO4:Eu3+, CaWO4:Tb3+, and CaWO4 phosphors via microcontact printing route. ACS Appl Mater & Interfaces 3: 3921–3928

    Google Scholar 

  116. Wang D, Yang PP, Cheng ZY, Wang WX, Hou ZY, Dai YL, Li CX, Lin J (2012) Patterning of Gd2(WO4)3:Ln3+ (Ln = Eu, Tb) luminescent films by microcontact printing route. J Coll Inter Sci 365: 320–325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, G., Lin, J. (2016). Phosphors for Field Emission Display: Recent Advances in Synthesis, Improvement, and Luminescence Properties. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_2

Download citation

Publish with us

Policies and ethics