Skip to main content

Luminescent Materials for 3D Display Technology

  • Chapter
  • First Online:

Abstract

As an interesting fashioned and useful technology, three-dimensional (3D) display provides enhanced information for understanding and exhibition. Among the principles or concepts to realize 3D visualization, upconversion volumetric display and computer-generated holographic display are attractive and promising technologies without using eyewears. In these display systems, luminescent materials have been widely explored as display mediums, which are the key components in determining the quality of reconstructed images. This chapter deals with the luminescent materials for 3D display technology. We first explain the principles of upconversion 3D volumetric display and computer-generated holographic display, then describe the progress of luminescence materials as well as the criteria and concepts of materials design, and finally offer a summary with our perspective. Compared with the well-established applications of luminescence materials in lighting and display technologies, the use of luminescence materials in 3D display is in their infancy, yet has not been fully explored. We hope the chapter could evoke the research interest to design and develop luminescent materials toward real naked-eyes 3D display technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hong J, Kim Y, Choi HJ, Hahn J, Park JH, Kim H, Min SW, Chen N, Lee B (2011)Three-dimensional display technologies of recent interest: principles, status, and issues. Appl Optics 50: H87.

    Google Scholar 

  2. Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38: 31.

    Google Scholar 

  3. Hecht J (2011) 3-D TV and movies: exploring the hangover effect. Optics and Photonics News 22: 20.

    Google Scholar 

  4. Li X, Ren H, Chen X, Liu J, Li Q, Li C, Xue G, Jia J, Cao L, Sahu A, Hu B, Wang Y, Jin G, Gu M (2015) Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat Commun 6.

    Google Scholar 

  5. Sun B, Edgar MP, Bowman R, Vittert LE, Welsh S, Bowman A, Padgett MJ (2013) 3D computational imaging with single-pixel detectors. Science 340: 844.

    Google Scholar 

  6. Tay S, Blanche PA, Voorakaranam R, Tunc AV, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N (2008) An updatable holographic three-dimensional display. Nature 451: 694.

    Google Scholar 

  7. Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38: 37.

    Google Scholar 

  8. Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5: 23.

    Google Scholar 

  9. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104: 139.

    Google Scholar 

  10. Zhang F, Zhong H, Chen C, Wu XG., Hu X, Huang H, Han J, Zou B, Dong Y (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9: 4533.

    Google Scholar 

  11. Zhu CL, Liu LB, Yang Q, Lv FT, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112: 4687.

    Google Scholar 

  12. Eichenlaub JB (1991) Progress in autostereoscopic display technology at Dimension Technologies Inc. Proc SPIE 1457: 290.

    Google Scholar 

  13. Favalora GE, Napoli J, Hall DM, Dorval RK, Giovinco M, Richmond MJ, Chun WS (2002) 100-million-voxel volumetric display. Proc SPIE 4712: 300.

    Google Scholar 

  14. Langhans K, Bahr D, Bezecny D, Homann D, Oltmann K, Oltmann K, Guill C, Rieper E, Ardey G (2002) FELIX 3D display: an interactive tool for volumetric imaging. Proc SPIE 4660: 176.

    Google Scholar 

  15. Cho YW, Oh JE, Kim YH (2012) Storage and retrieval of ghost images in hot atomic vapor. Opt Express 20: 5809.

    Google Scholar 

  16. Iwanaga H (2009) Development of highly soluble anthraquinone dichroic dyes and their application to three-layer guest-host liquid crystal displays. Materials 2: 1636.

    Google Scholar 

  17. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273: 1185.

    Google Scholar 

  18. Zhu M, Zhong HZ, Jia J, Fu WP, Liu J, Zou BS, Wang YT (2014) PVA hydrogel embedded with quantum dots: a potential scalable and healable display medium for holographic 3D applications. Adv Opt Mater 2: 338.

    Google Scholar 

  19. Lewis JD, Verber CM, McGhee RB (1971) A true three-dimensional display. Electron Devices, IEEE Transactions on 18: 724.

    Google Scholar 

  20. Honda T, Doumuki T, Akella A, Galambos L, Hesselink L (1998) One-color one-beam pumping of Er3+-doped ZBLAN glasses for a three-dimensional two-step excitation display. Optics Letters 23: 1108.

    Google Scholar 

  21. Gabor D (1948) A new microscopic principle. Nature 161: 777.

    Google Scholar 

  22. Blanche PA, Bablumian A, Voorakaranam R, Christenson C, Lin W, Gu T, Flores D, Wang P, Hsieh WY, Kathaperumal M, Rachwal B, Siddiqui O, Thomas J, Norwood RA, Yamamoto M, Peyghambarian N (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468: 80.

    Google Scholar 

  23. Teng DD, Pang ZY, Liu LL, Wang B (2014) Displaying three-dimensional medical objects by holographical technique. Opt Eng 53: 6.

    Google Scholar 

  24. Takaki Y, Nakamura J (2011) Zone plate method for electronic holographic display using resolution redistribution technique. Opt Express 19: 14707.

    Google Scholar 

  25. Zito R (1963) Rate analysis of multiple-step excitation in mercury vapor. J Appl Phys 34: 1535.

    Google Scholar 

  26. Barnes RH, Moeller CE, KircherJF, Verber CM (1974) Two-step excitation of fluorescence in iodine monochloride vapor. Appl Phys Lett 24: 610.

    Google Scholar 

  27. Kim II, KorevaarEJ, Hakakha H (1996) Three-dimensional volumetric display in rubidium vapor. Proc SPIE 2650: 274.

    Google Scholar 

  28. Zhao YS, Fu HB, Peng AD, Ma Y, Xiao DB, Yao JN (2008) Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater 20: 2859.

    Google Scholar 

  29. Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers-seeing polymers in a new light. Angew Chem Int Ed 37: 402.

    Google Scholar 

  30. Carlos LD, Ferreira RAS, Bermudez VZ, Ribeiro SJL (2009) Lanthanide-containing light-emitting organic–inorganic hybrids: abet on the future. Adv Mater 21: 509.

    Google Scholar 

  31. Cho JH, Bass M, Jenssen HP (2007) Volumetric three-dimensional up-conversion display medium. J Soc Inf Display 15: 1029.

    Google Scholar 

  32. Rapaport A, Ayrault K, St Matthew-Daniel E, Bass M (1999) Visible light emission from dyes excited by simultaneous absorption of two different frequency beams of light. Appl Phys Lett 74: 329.

    Google Scholar 

  33. Singh-Rachford TN, Castellano FN (2010) Photon upconversion based on sensitized triplet–triplet annihilation. Coordin Chem Rev 254: 2560.

    Google Scholar 

  34. Parker CA, Hatchard CG (1962) Sensitised anti-stokes delayed fluorescence. Proc Chem Soc Lond 386.

    Google Scholar 

  35. Singh-Rachford TN, Haefele A, Ziessel R, Castellano FN (2008) Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. J Am Chem Soc 130: 16164.

    Google Scholar 

  36. Cao X, Hu B, Zhang P (2013) High upconversion efficiency from hetero triplet–triplet annihilation in multiacceptor systems. J Phys Chem Lett 4: 2334.

    Google Scholar 

  37. Kim JH, Deng F, Castellano FN, Kim JH (2012) High efficiency low-power upconverting soft materials. Chem Mater 24: 2250. http://pubs.acs.org/doi/pdf/10.1021/cm3012414

    Google Scholar 

  38. Vadrucci R, Weder C, Simon YC (2015) Organogels for low-power light upconversion. Mater Horizons 2: 120.

    Google Scholar 

  39. Kim JH, Deng F, Castellano FN, Kim JH (2014) Red-to-blue/cyan/green upconverting microcapsules for aqueous- and dry-phase color tuning and magnetic sorting. ACS Photonics 1: 382.

    Google Scholar 

  40. Svagan AJ, Busko D, Avlasevich Y, Glasser, G, Baluschev S, Landfester K (2014) Photon energy upconverting nanopaper: a bioinspired oxygen protection strategy. ACS Nano 8: 8198.

    Google Scholar 

  41. Yang Z, Feng Z, Jiang Z (2005) Upconversion emission in multi-doped glasses for full colour display. J Phys D Appl Phys 38: 1629.

    Google Scholar 

  42. Hinklin TR, Rand SC, Laine RM (2008) Transparent, polycrystalline upconverting nanoceramics: towards 3-D displays. Adv Mater 20: 1270.

    Google Scholar 

  43. Wang GF, Peng Q, Li YD (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Accounts Chem Res 44:322.

    Google Scholar 

  44. Stouwdam JW, Hebbink GA, Huskens J, Van Veggel FCJM (2003) Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem Mater 15: 4604.

    Google Scholar 

  45. Boyer JC, Johnson NJJ, Van Veggel FCJM (2009) Upconverting lanthanide-doped NaYF4-PMMA polymer composites prepared by in situ polymerization. Chem Mater 21: 2010.

    Google Scholar 

  46. Liu XF, Dong GP, Qiao YB, Qiu JR (2008) Transparent colloid containing upconverting nanocrystals: an alternative medium for three-dimensional volumetric display. Appl Optics 47: 6416.

    Google Scholar 

  47. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38: 976.

    Google Scholar 

  48. Liu XG, Yan CH, Capobianco JA (2015) Photon upconversion nanomaterials. Chem Soc Rev 44: 1299.

    Google Scholar 

  49. Lin C, Berry MT, Anderson R, Smith S, May PS (2009) Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment. Chem Mater 21: 3406.

    Google Scholar 

  50. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nat 463: 1061.

    Google Scholar 

  51. Zhu HM, Lin CC, Luo WQ, Shu ST, Liu ZG, Liu YS, Kong JT, Ma E, Cao YG, Liu RS, Chen XY (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun 5: 4312.

    Google Scholar 

  52. Deng R, Qin F, Chen R, Huang W, Hong M, Liu X (2015) Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotechnology 10: 237.

    Google Scholar 

  53. Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V (2013) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7: 13.

    Google Scholar 

  54. Zhong H, Bai Z, Zou B (2012) Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. The Journal of Physical Chemistry Letters 3: 3167.

    Google Scholar 

  55. Turro NJ, Ramamurthy V, Scaiano JC (2012) Modern molecular photochemistry of organic molecules. Photochem Photobiol 88: 1033.

    Google Scholar 

  56. Bradshaw LR, Knowles KE, McDowall S, Gamelin DR (2015) Nanocrystals for luminescent solar concentrators. Nano Lett 15: 1315.

    Google Scholar 

  57. Wang M, Chen Z, Zheng W, Zhu H, Lu S, Ma E, Tu D, Zhou S, Huang M, Chen (2014) Lanthanide-doped upconversion nanoparticles electrostatically coupled with photosensitizers for near-infrared-triggered photodynamic therapy. Nanoscale 6: 8274.

    Google Scholar 

  58. Liu WT, Huang WY (2012) Enhancing the color gamut of white displays using novel deep-blue organic fluorescent dyes to form color-changed thin films with improved efficiency. Opt Eng 51: 104001.

    Google Scholar 

  59. Wang ZW, Zhu M, Bai ZL, Chen BK, Wang YT, Zhong HZ (Unpublished) Double-network hydrogel embedded with quantum dots: enhanced visual performance for holographic 3D display.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haizheng Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhong, H., Wang, Z., Lu, W., Liu, J., Wang, Y. (2016). Luminescent Materials for 3D Display Technology. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_18

Download citation

Publish with us

Policies and ethics