Skip to main content

Abstract

Rare earth lanthanide-doped upconversion nanoparticles (UCNPs), which can nonlinearly convert long wavelength near-infrared (NIR) light illumination into multiplex emissions, have been widely used in biomedical applications for in vitro and in vivo biolabeling and optical data storage based on their controllable multicolor emission properties. Compared to the traditional used downconversion fluorescence imaging strategies, such NIR light-excited luminescence of UCNPs displays low cytotoxicity and high photostability with little background auto-fluorescence. In this way, it therefore allows for deep tissue penetration, making them attractive as promising contrast agents for biological sensing, biomedical imaging, and diseases theranostics. In this chapter, we mainly place our attention on the recent development of new type of lanthanide-doped UCNP nanomaterials for their in vitro and in vivo bioimaging applications and we also highlight some key challenges for future biomedical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achilefu S (2010) Introduction to concepts and strategies for molecular imaging. Chem Rev 110: 2575.

    Google Scholar 

  2. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: Status and challenges. Trends Mol Med 12: 574.

    Google Scholar 

  3. Hildebrandt IJ, Gambhir SS (2008) Molecular imaging applications for immunology. Clin Immunol 2: 210.

    Google Scholar 

  4. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452: 580.

    Google Scholar 

  5. Jiang TT, Xing BG, Rao JH (2008) Recent development of biological reporter technology for detecting gene expression. Biotech Genet Eng Rev 25: 41.

    Google Scholar 

  6. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev 17:545.

    Google Scholar 

  7. Willmann JK, Van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591.

    Google Scholar 

  8. Mullard A (2013) Molecular imaging as a de-risking tool: Coming into focus? Nat Rev Drug Discov 12: 251.

    Google Scholar 

  9. Hastings JW (1996) Chemistries and colors of bioluminescent reactions: A review. Gene 173:5.

    Google Scholar 

  10. Leoning AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4:641.

    Google Scholar 

  11. Contag CH, Bachmann MH (2002) Advances in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235.

    Google Scholar 

  12. Ray P, Gambhir SS (2007) Noninvasive imaging of molecular events with bioluminescent reporter genes in living subjects. Methods Mol Biol 411: 131.

    Google Scholar 

  13. Wehrman TS, von Degenfeld G, Krutzik PO, Nolan GP, Blau HM (2006) Luminescent imaging of beta-galactosidase activity in living subjects using sequential reporter-enzyme luminescence. Nat methods 3:295.

    Google Scholar 

  14. Tung CH, Zeng Q, Shah K, Kim DE, Schellingerhout D, Weissleder R (2004) In vivo imaging of beta-galactosidase activity using far red fluorescent switch. Cancer Res 6:1579.

    Google Scholar 

  15. Shah K, Tung CH, Breakefield XO, Weissleder R (2005) In vivo imaging of S-TRAIL-mediated tumor regression and apoptosis. Mol Ther 11: 926.

    Google Scholar 

  16. Zhou W, Valley MP, Shultz J, Hawkins EM, Bernad L, Good T, Good D, Riss TL, Klaubert DH, Wood KV (2006) New bioluminogenic substrates for monoamine oxidase assays. J Am Chem Soc 128:3122.

    Google Scholar 

  17. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescent imaging in vivo: Recent advances. Curr Opin Biotech 18:17.

    Google Scholar 

  18. Licha, K, Olbrich, C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57:1087.

    Google Scholar 

  19. Stefflova K, Chen J, Zheng G (2007) Using molecular beacons for cancer imaging and treatment. Front Biosci 12:4709.

    Google Scholar 

  20. Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 184:64.

    Google Scholar 

  21. Shao Q, Yang YM, Xing BG (2010) Chemistry of optical imaging probes. In molecular imaging probes for cancer research, world science: British Columbia, Canada, 2010.

    Google Scholar 

  22. Rothman DM, Shults MD, Imperiali B (2005) Chemical approaches for investigating phosphorylation in signal transduction networks. Trends Cell Biol 15:502.

    Google Scholar 

  23. Lawrence DS (2005) The preparation and in vivo applications of caged peptides and proteins. Curr Opin Chem Biol 9:570.

    Google Scholar 

  24. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925.

    Google Scholar 

  25. Gao JH, Chen XY, Cheng Z (2010) Near-infrared quantum dots as optical probes for tumor imaging. Curr Top Med Chem 10:1147.

    Google Scholar 

  26. Cai WB, Chen XY (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3:1840.

    Google Scholar 

  27. Biju V (2014) Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev 43:744.

    Google Scholar 

  28. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li J, Sundaresan G, Wu A, Gambhir S.S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538.

    Google Scholar 

  29. Probst CE, Zrazhevskiy P, Bagalkot V, Gao XH (2013) Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 65: 703.

    Google Scholar 

  30. Biju V, Itoh T, Ishikawa M (2010) Delivering quantum dots to cells: Bioconjugated quantum dots for targeted and nonspecific extracellular and intracellular imaging. Chem Soc Rev 39:3031.

    Google Scholar 

  31. Chi X, Huang D, Zhao Z, Zhou Z, Yin Z, Gao J (2012) Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 33:189.

    Google Scholar 

  32. Jayakumar MK, Idris NM, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 109:8483.

    Google Scholar 

  33. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130:5642.

    Google Scholar 

  34. Wang F, Liu X (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38:976.

    Google Scholar 

  35. Haase H, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808.

    Google Scholar 

  36. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging Curr Opin Chem Biol 14:582.

    Google Scholar 

  37. Feng W, Sun LD, Zhang YW, Yan CH (2010) Synthesis and assembly of rare earth nanostructures directed by the principle of coordination chemistry in solution-based process. Coordin Chem Rev 254:1038.

    Google Scholar 

  38. Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5:23.

    Google Scholar 

  39. Gu Z, Yan L, Tian G, Li S, Chai Z, Zhao Y (2013) Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 25:3758.

    Google Scholar 

  40. Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924.

    Google Scholar 

  41. Wang F, Banerjee D, Liu Y, Chen X, Liu X (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839.

    Google Scholar 

  42. Cheng L, Yang K, Li Y, Chen J, Wang C, Shao M, Lee ST, Liu Z (2011) Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew Chem Int Ed 50:7385.

    Google Scholar 

  43. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323.

    Google Scholar 

  44. Yi GS, Chow GM (2006) Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv Funct Mater 16: 2324.

    Google Scholar 

  45. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061.

    Google Scholar 

  46. Mai HX, Zhang YW, Si R, Yan ZG, Sun LD, You LP, Yan CH (2006) High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J Am Chem Soc 128:6426.

    Google Scholar 

  47. Zhang YW, Sun X, Si R, You LP, Yan CH (2005) Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J Am Chem Soc 127:3260.

    Google Scholar 

  48. Mai HX, Zhang YW, Sun LD, Yan CH (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb,Er core and core/shell-structured nanocrystals. J Phys Chem C 111:13721.

    Google Scholar 

  49. Mai HX, Zhang YW, Sun LD, Yan CR (2007) Size- and phase-controlled synthesis of monodisperse NaYF4:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy. J Phys Chem C 111:13730.

    Google Scholar 

  50. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121.

    Google Scholar 

  51. Wang L, Li P, Zhuang J, Bai F, Feng J, Yan X, Li Y (2008) Carboxylic acid enriched nanospheres of semiconductor nanorods for cell imaging. Angew Chem Int Ed 47:1054.

    Google Scholar 

  52. Wang M, Liu JL, Zhang YX, Hou W, Wu XL, Xu SK (2009) Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals. Mater Lett, 63:325.

    Google Scholar 

  53. Sun YJ, Chen Y, Tian LJ, Yu Y, Kong XG, Zhao JW, Zhang H (2007) Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals. Nanotechnology 18:275609.

    Google Scholar 

  54. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y (2012) Mn2+ Dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24:1226.

    Google Scholar 

  55. Stouwdam JW, van Veggel FCJM (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2:733.

    Google Scholar 

  56. Patra A, Friend CS, Kapoor R, Prasad PN (2002) Upconversion in Er3+:ZrO2 nanocrystals. J Phys Chem B 106:1909.

    Google Scholar 

  57. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2004) Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+, Yb3+ nanocrystals. J Appl Phys 96:661.

    Google Scholar 

  58. Xu LL, Yu YN, Li XG, Somesfalean G, Zhang YG, Gao H, Zhang ZG (2008) Synthesis and upconversion properties of monoclinic Gd2O3:Er3+ nanocrystals. Opt Mater 30: 1284.

    Google Scholar 

  59. Kong WJ, Shan J, Ju YG (2010) Flame synthesis and effects of host materials on Yb3+/ Er3+ co-doped upconversion nanophosphors. Mater Lett 64: 688.

    Google Scholar 

  60. Qin X, Yokomori T, Ju YG (2007) Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Appl Phys Lett 90:073104.

    Google Scholar 

  61. Ma P, Xiao H, Li X, Li C, Dai Y, Cheng Z, Jing X, Lin J (2013) Rational design of multifunctional upconversion nanocrystals/polymer nanocomposites for cisplatin(IV) delivery and biomedical imaging. Adv Mater 25:4898.

    Google Scholar 

  62. Yang Y, Shao Q, Deng R, Wang C, Teng X, Cheng K, Chen Z, Huang L, Liu Z, Liu X, Xing B (2012) In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed 51:3125.

    Google Scholar 

  63. Liu JN, Bu W, Pan LM, Zhang S, Chen F, Zhou L, Zhao KL, Peng W, Shi J (2012) Simultaneous nuclear imaging and intranuclear drug delivery by nuclear-targeted multifunctional upconversion nanoprobes. Biomaterials 33:7282.

    Google Scholar 

  64. Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078.

    Google Scholar 

  65. Rantanen T, Jarvenpaa ML, Vuojola J, Kuningas K, Soukka T (2008) Fluorescence-quenching-based enzyme-activity assay by using photon upconversion. Angew Chem Int Ed 47:3811.

    Google Scholar 

  66. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem Mater 21:717.

    Google Scholar 

  67. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11:835.

    Google Scholar 

  68. Chen, J, Guo C, Wang M, Huang L, Wang L, Mi C, Li J, Fang X, Mao C, Xu S (2011) Controllable synthesis of NaYF4:Yb,Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans. J Mater Chem 21:2632.

    Google Scholar 

  69. Zhou HP, Xu CH, Sun W, Yan CH (2009) Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv Funct Mater 19:3892.

    Google Scholar 

  70. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130:3023.

    Google Scholar 

  71. Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao J, Wang X, Peng Q, Li YD (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054.

    Google Scholar 

  72. Bao Y, Luu QAN, Lin CK, Schloss JM, May PS, Jiang CY (2010) Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals. J Mater Chem, 20:8356.

    Google Scholar 

  73. Yang YM, Velmurugan B Liu, Xing BG (2013) NIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release. Small 9:2937.

    Google Scholar 

  74. Yang YM, Liu F, Liu XG, Xing BG (2013) NIR light controlled photorelease of siRNA and its targeted intracellular delivery based on upconversion nanoparticles. Nanoscale 5:231.

    Google Scholar 

  75. Cao T, Yang Y, Gao Y, Zhou J, Li Z, Li F (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32: 2959.

    Google Scholar 

  76. Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77: 6864.

    Google Scholar 

  77. Peer D, Karp JM, Hong, S, FaroKHzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751.

    Google Scholar 

  78. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad, PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8:3834.

    Google Scholar 

  79. Xing H, Zheng X, Ren Q, Bu W, Ge W, Xiao Q, Zhang S, Wei C, Qu H, Wang Z, Hua Y, Zhou L, Peng W, Zhao K, Shi J (2013) Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci Rep UK 3:1.

    Google Scholar 

  80. Lim SF, Riehn R, Ryu WS, Khanarian N, Tung CK, Tank D, Austin RH (2006) In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans. Nano Lett 6:169.

    Google Scholar 

  81. Wang K, Ma JB, He M, Gao G, Xu H, Sang J, Wang YX, Zhao BQ, Cui DX (2013) Toxicity assessments of near-infrared upconversion luminescent LaF3:Yb,Er in early development of zebrafish embryos. Theranostics 3:258.

    Google Scholar 

  82. Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H (2011) Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17:1685.

    Google Scholar 

  83. Chatterjee DK, Rufaihah AJ, Zhang Y (2008) Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29:937.

    Google Scholar 

  84. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31:3287.

    Google Scholar 

  85. Xia A, Chen M, Gao Y, Wu, D Feng, W, Li F (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials 33:5394.

    Google Scholar 

  86. Xing H, Bu W, Ren Q, Zheng X, Li M, Zhang S, Qu H, Wang Z, Hua Y, Zhao K, Zhou L, Peng W, Shi J (2012) A NaYbF4:Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33:5384.

    Google Scholar 

  87. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133:17122.

    Google Scholar 

  88. Yang T, Sun Y, Liu Q, Feng W, Yang P, Li F (2012) Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 33:3733.

    Google Scholar 

  89. Wang C, Cheng L, Xu H, Liu Z (2012) Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33:4872.

    Google Scholar 

  90. Chari RV (2008) Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc Chem Res 41:98.

    Google Scholar 

  91. Xiong L, Chen Z, Yu M, Li F, Liu C, Huang C (2009) Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. Biomaterials 30:5592.

    Google Scholar 

  92. Xiong L, Chen Z, Tian Q, Cao T, Xu C, Li F (2009) High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal Chem 81:8687.

    Google Scholar 

  93. Danhier F, Le Breton, A Préat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9:2961.

    Google Scholar 

  94. Li Y, Jing C, Zhang L, Long Y (2012) Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem Soc Rev 41:632.

    Google Scholar 

  95. Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 6:407.

    Google Scholar 

  96. Meyer A, Auernheimer J, Modlinger A, Kessler H (2006) Targeting RGD recognizing integrins: Drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des 12: 2723.

    Google Scholar 

  97. Yu XF, Sun Z, Li M, Xiang Y, Wang QQ, Tang F, Wu Y, Cao Z, Li W (2010) Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 31:8724.

    Google Scholar 

  98. Chien Y, Chou Y, Wang S, Hung S, Liau M, Chao Y, Su C, Yeh C (2013) Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. ACS Nano 7:8516.

    Google Scholar 

  99. Shao Q, Xing B (2010) Photoactive molecules for applications in molecular imaging and cell biology. Chem Soc Rev 39: 2835.

    Google Scholar 

  100. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed 45:4900.

    Google Scholar 

  101. Lee H, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: Design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4:409.

    Google Scholar 

  102. Young DD, Deiters A (2007) Photochemical control of biological processes. Org Biomol Chem 5: 999.

    Google Scholar 

  103. Min Y, Li J, Liu F, Yeow EK, Xing B (2014) Near-infrared light-mediated photoactivation of a platinum antitumor prodrug and simultaneous cellular apoptosis imaging by upconversion-luminescent nanoparticles. Angew Chem Int Ed 53:1012.

    Google Scholar 

  104. Chen Z, Liu Z, Li Z, Ju E, Gao N, Zhou L, Ren J, Qu X (2015) Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. Biomaterials 39:15.

    Google Scholar 

  105. Yang D, Dai Y, Liu J, Zhou Y, Chen Y, Li C, Ma P, Lin J (2014) Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials 35:2011.

    Google Scholar 

  106. Yang Y, Mijalis AJ, Fu, H, Agosto C, Tan KJ, Batteas JD, Bergbreiter DE (2012) Reversible Changes in Solution pH Resulting from Changes in Thermoresponsive Polymer Solubility. J Am Chem Soc 134:7378.

    Google Scholar 

  107. Cheng L, Yang K, Li Y, Zeng X, Shao M, Lee ST, Liu Z (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33:2215.

    Google Scholar 

  108. He M, Huang P, Zhang C, Hu H, Bao C, Gao G, He R, Cui D (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21:4470.

    Google Scholar 

  109. Sun Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F (2011) Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32:2999.

    Google Scholar 

  110. Yang Y, Sun Y, Cao T, Peng J, Liu Y, Wu Y, Feng W, Zhang Y, Li F (2013) Hydrothermal synthesis of NaLuF4 Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials 34:774.

    Google Scholar 

  111. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Wu D, Li F (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32:1148.

    Google Scholar 

  112. Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ, Prasad P N, Kim C, Cai W, Lovell JF (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27: 1785.

    Google Scholar 

  113. Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J (2012) Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33:1079.

    Google Scholar 

  114. Chen G, Ohulchanskyy TY, Kachynski A, Agren H, Prasad PN (2011) Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5:4981.

    Google Scholar 

  115. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18:1580.

    Google Scholar 

  116. Wang C, Tao HQ, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32: 6145.

    Google Scholar 

  117. Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2013) In vivo targeted deep-tissue photodynamic therapy based on near-infrared light triggered upconversion nanoconstructure. ACS Nano7: 676.

    Google Scholar 

  118. Zhan Q, Qian J, Liang H, Somesfalean G, Wang D, He S, Zhang Z, Andersson-Engels S (2011) Using 915 nm laser excited Tm3+/Er3+/Ho3+ doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5:3744.

    Google Scholar 

  119. Wang YF, Liu GY, Sun LD, Xiao JW, Zhou JC, Yan CH (2013) Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7:7200.

    Google Scholar 

  120. Zou W, Visser C, Maduro JA, Pshenichnikov MS, Hummelen JC (2012) Broadband dye-sensitized upconversion of near-infrared light. Nat Photon 6:560.

    Google Scholar 

  121. Shen J, Chen G, Vu AM, Fan W, Bilsel OS, Chang CC, Han G (2013) Engineering the upconversion nanoparticle excitation wavelength: Cascade sensitization of tri-doped upconversion colloidal nanoparticles at 800 nm. Adv Opt Mater 1:644.

    Google Scholar 

  122. Xie X, Gao N, Deng R, Sun Q, Xu QH, Liu X (2013) Mechanistic investigation of photon upconversion in Nd3+-sensitized core-shell nanoparticles. J Am Chem Soc 135:12608.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengang Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Ai, X., Aw, J., Xing, B. (2016). Upconversion Nanoparticles for Bioimaging. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_12

Download citation

Publish with us

Policies and ethics