Skip to main content

Upconversion Luminescence Behavior of Single Nanoparticles

  • Chapter
  • First Online:
Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications

Abstract

Upconversion nanoparticles (UCNPs) have made a significant and valuable contribution to materials science, photophysics, and biomedicine, which benefit from their specific spectroscopic characters. However, the ensemble spectroscopy of UCNPs is limited for the electronic behavior in average effect, which ignores the fact that the nanoparticles are heterogeneous. Toward the research focus of heterogeneous intrinsic structure, unique photophysical phenomena, and advanced applications, the optical characterization of single UCNPs is promoted to a frontier breakthrough of UCNPs community. In this chapter, we overview the importance of the single UCNPs characterization, the typical principles of upconversion, and the single particle detection approaches. A considerable emphasis is placed on the specific spectroscopic study of single UCNPs, which shows us fantastic photophysical phenomena beyond ensemble measurement. Parallel efforts are devoted to the currently applications of single UCNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide‐doped NaYF4 nanocrystals. Adv Mater 16: 2102.

    Google Scholar 

  2. Mai H-X, Zhang Y-W, Sun L-D, Yan C-H (2007) Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/shell-structured nanocrystals. J Phys Chem C 111: 13721.

    Google Scholar 

  3. Wang L, Li Y (2006) Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett 6: 1645.

    Google Scholar 

  4. Ehlert O, Thomann R, Darbandi M, Nann T (2008) A four-color colloidal multiplexing nanoparticle system. ACS nano 2: 120.

    Google Scholar 

  5. Wang F, Liu XG (2008) Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130: 5642.

    Google Scholar 

  6. Wang J, Wang F, Wang C, Liu Z, Liu XG (2011) Single-band upconversion emission in lanthanide-doped KMnF3 nanocrystals. Angew Chem Int Ed 50: 10369.

    Google Scholar 

  7. Chan EM, Han G, Goldberg JD, et al. (2012) Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. Nano Lett 12: 3839.

    Google Scholar 

  8. Chen D, Lei L, Zhang R, Yang A, Xu J, Wang Y (2012) Intrinsic single-band upconversion emission in colloidal Yb/Er(Tm):Na3Zr(Hf)F7 nanocrystals. Chem Commun 48: 10630.

    Google Scholar 

  9. Tian G, Gu Z, Zhou L, et al. (2012) Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater 24: 1226.

    Google Scholar 

  10. Shan GB, Demopoulos GP (2010) Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv Mater 22: 4373.

    Google Scholar 

  11. Liang L, Liu Y, Bu C, et al. (2013) Highly uniform, bifunctional core/double-shell-structured beta-NaYF4:Er3+,Yb3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv Mater 25: 2174.

    Google Scholar 

  12. Chang J, Ning YH, Wu SL, Niu WB, Zhang SF (2013) Effectively utilizing NIR light using direct electron injection from up-conversion nanoparticles to the TiO2 photoanode in dye-sensitized solar cells. Adv Funct Mater 23: 5910.

    Google Scholar 

  13. Wang F, Liu XG (2009) Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem Soc Rev 38: 976.

    Google Scholar 

  14. Zhou J, Liu Z, Li FY (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41: 1323.

    Google Scholar 

  15. Cheng L, Wang C, Liu Z (2013) Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 5: 23.

    Google Scholar 

  16. Chatterjee DK, Gnanasammandhan MK, Zhang Y (2010) Small upconverting fluorescent nanoparticles for biomedical applications. Small 6: 2781.

    Google Scholar 

  17. Wang F, Banerjee D, Liu YS, Chen XY, Liu XG (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135: 1839.

    Google Scholar 

  18. Gorris HH, Wolfbeis OS (2013) Photon‐upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52: 3584.

    Google Scholar 

  19. Haase M, Schafer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50: 5808.

    Google Scholar 

  20. Fernee MJ, Tamarat P, Lounis B (2014) Spectroscopy of single nanocrystals. Chem Soc Rev 43: 1311.

    Google Scholar 

  21. Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, Van Duyne RP (2014) Molecular plasmonics for nanoscale spectroscopy. Chem Soc Rev 43: 1230.

    Google Scholar 

  22. Cui J, Beyler AP, Bischof TS, Wilson MW, Bawendi MG (2014) Deconstructing the photon stream from single nanocrystals: From binning to correlation. Chem Soc Rev 43: 1287.

    Google Scholar 

  23. Empedocles SA, Neuhauser R, Shimizu K, Bawendi MG (1999) Photoluminescence from single semiconductor nanostructures. Adv Mater 11: 1243.

    Google Scholar 

  24. Blanton SA, Hines MA, Guyot-Sionnest P (1996) Photoluminescence wandering in single CdSe nanocrystals. Appl Phys Lett 69: 3905.

    Google Scholar 

  25. Nirmal M, Dabbousi B, Bawendi M, et al. (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383: 802.

    Google Scholar 

  26. Empedocles S, Bawendi M (1997) Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278: 2114.

    Google Scholar 

  27. Huang X, Han S, Huang W, Liu X (2013) Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev 42: 173.

    Google Scholar 

  28. Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104: 139.

    Google Scholar 

  29. Wang HQ, Batentschuk M, Osvet A, Pinna L, Brabec CJ (2011) Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv Mater 23: 2675.

    Google Scholar 

  30. Trupke T, Green M, Würfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92: 4117.

    Google Scholar 

  31. de Wild J, Meijerink A, Rath JK, van Sark WGJHM, Schropp REI (2011) Upconverter solar cells: materials and applications. Energ Environ Sci 4: 4835.

    Google Scholar 

  32. Wang F, Deng RR, Wang J, et al. (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10: 968.

    Google Scholar 

  33. Vetrone F, Naccache R, Zamarron A, et al. (2010) Temperature sensing using fluorescent nanothermometers. ACS nano 4: 3254.

    Google Scholar 

  34. Wang F, Han Y, Lim CS, et al. (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463: 1061.

    Google Scholar 

  35. Wang F, Wang JA, Liu XG (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49: 7456.

    Google Scholar 

  36. Yang YM, Shao Q, Deng RR, et al. (2012) In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew Chem Int Ed 51: 3125.

    Google Scholar 

  37. Deng RR, Xie XJ, Vendrell M, Chang YT, Liu XG (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133: 20168.

    Google Scholar 

  38. Xue XJ, Wang F, Liu XG (2011) Emerging functional nanomaterials for therapeutics. J Mater Chem 21: 13107.

    Google Scholar 

  39. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273: 1185.

    Google Scholar 

  40. Wang G, Peng Q, Li Y (2011) Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications. Acc Chem Res 44: 322.

    Google Scholar 

  41. Fischer LH, Harms GS, Wolfbeis OS (2011) Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed 50: 4546.

    Google Scholar 

  42. Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41: 1323.

    Google Scholar 

  43. Li C, Lin J (2010) Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application. J Mater Chem 20: 6831.

    Google Scholar 

  44. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50: 5808.

    Google Scholar 

  45. Ju Q, Tu D, Liu Y, et al. (2011) Amine-functionalized lanthanide-doped KGdF4 nanocrystals as potential optical/magnetic multimodal bioprobes. J Am Chem Soc 134: 1323.

    Google Scholar 

  46. Tu D, Liu L, Ju Q, et al. (2011) Time‐resolved FRET biosensor based on amine‐functionalized lanthanide‐doped NaYF4 nanocrystals. Angew Chem Int Ed 50: 6306.

    Google Scholar 

  47. Mader HS, Kele P, Saleh SM, Wolfbeis OS (2010) Upconverting luminescent nanoparticles for use in bioconjugation and bioimaging. Curr Opin Chem Biol 14: 582.

    Google Scholar 

  48. Yan C, Dadvand A, Rosei F, Perepichka DF (2010) Near-IR photoresponse in new up-converting CdSe/NaYF4: Yb, Er nanoheterostructures. J Am Chem Soc 132: 8868.

    Google Scholar 

  49. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11: 835.

    Google Scholar 

  50. Ye X, Collins JE, Kang Y, et al. (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci USA 107: 22430.

    Google Scholar 

  51. Chen F, Bu W, Zhang S, et al. (2011) Positive and negative lattice shielding effects co‐existing in Gd (III) ion doped bifunctional upconversion nanoprobes. Adv Funct Mater 21: 4285.

    Google Scholar 

  52. Zhang F, Braun GB, Pallaoro A, et al. (2011) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12: 61.

    Google Scholar 

  53. Cheng L, Yang K, Li Y, et al. (2012) Multifunctional nanoparticles for upconversion luminescence/MR multimodal imaging and magnetically targeted photothermal therapy. Biomaterials 33: 2215.

    Google Scholar 

  54. Bouzigues C, Gacoin T, Alexandrou A (2011) Biological applications of rare-earth based nanoparticles. ACS nano 5: 8488.

    Google Scholar 

  55. Jayakumar MKG, Idris NM, Zhang Y (2012) Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci USA 109: 8483.

    Google Scholar 

  56. Zhou J-C, Yang Z-L, Dong W, Tang R-J, Sun L-D, Yan C-H (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4: Yb, Tm nanocrystals. Biomaterials 32: 9059.

    Google Scholar 

  57. Zeng S, Xiao J, Yang Q, Hao J (2012) Bi-functional NaLuF4: Gd3+/Yb3+/Tm3+ nanocrystals: structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J Mater Chem 22: 9870.

    Google Scholar 

  58. Ren W, Tian G, Zhou L, et al. (2012) Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. Nanoscale 4: 3754.

    Google Scholar 

  59. Chen F, Zhang S, Bu W, et al. (2012) A uniform sub‐50 nm‐sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chem-Eur J 18: 7082.

    Google Scholar 

  60. Wei Y, Chen Q, Wu B, Zhou A, Xing D (2012) High-sensitivity in vivo imaging for tumors using a spectral up-conversion nanoparticle NaYF4: Yb3+, Er3+ in cooperation with a microtubulin inhibitor. Nanoscale 4: 3901.

    Google Scholar 

  61. Wu S, Duan N, Ma X, et al. (2012) Simultaneous detection of enterovirus 71 and coxsackievirus A16 using dual-colour upconversion luminescent nanoparticles as labels. Chem. Commun. 48: 4866.

    Google Scholar 

  62. Li LL, Zhang R, Yin L, et al. (2012) Biomimetic surface engineering of lanthanide‐doped upconversion nanoparticles as versatile bioprobes. Angew Chem Int Ed 124: 6225.

    Google Scholar 

  63. Wei W, He T, Teng X, et al. (2012) Nanocomposites of graphene oxide and upconversion rare‐earth nanocrystals with superior optical limiting performance. Small 8: 2271.

    Google Scholar 

  64. Liu Q, Sun Y, Yang T, Feng W, Li C, Li F (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133: 17122.

    Google Scholar 

  65. Mor FM, Sienkiewicz A, Forro L, Jeney S (2014) Upconversion particle as a local luminescent brownian probe: a photonic force microscopy study. Acs Photonics 1: 1251.

    Google Scholar 

  66. Gu FX, Zeng HP, Zhu YB, Yang Q, Ang LK, Zhuang SL (2014) Single-crystal Pd and its alloy nanowires for plasmon propagation and highly sensitive hydrogen detection. Adv Opt Mater 2: 189.

    Google Scholar 

  67. Park YI, Lee KT, Suh YD, Hyeon T (2014) Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc Rev 44: 1302.

    Google Scholar 

  68. Park YI, Kim JH, Lee KT, et al. (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21: 4467.

    Google Scholar 

  69. Wu SW, Han G, Milliron DJ, et al. (2009) Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc Natl Acad Sci USA 106: 10917.

    Google Scholar 

  70. Schietinger S, Menezes LD, Lauritzen B, Benson O (2009) Observation of size dependence in multicolor upconversion in single Yb3+, Er3+ codoped NaYF4 nanocrystals. Nano Lett 9: 2477.

    Google Scholar 

  71. Schietinger S, Aichele T, Wang HQ, Nann T, Benson O (2010) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10: 134.

    Google Scholar 

  72. Zhou JJ, Chen GX, Wu E, et al. (2013) Ultrasensitive polarized up-conversion of Tm3+-Yb3+ doped beta-NaYF4 Single nanorod. Nano Lett 13: 2241.

    Google Scholar 

  73. Gargas DJ, Chan EM, Ostrowski AD, et al. (2014) Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol 9: 300.

    Google Scholar 

  74. Kolesov R, Xia K, Reuter R, et al. (2012) Optical detection of a single rare-earth ion in a crystal. Nat Commun 3: 1029.

    Google Scholar 

  75. Ostrowski AD, Chan EM, Gargas DJ, et al. (2012) Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS nano 6: 2686.

    Google Scholar 

  76. Zhao JB, Jin DY, Schartner EP, et al. (2013) Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8: 729.

    Google Scholar 

  77. Warren-Smith SC, Afshar S, Monro TM (2008) Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. Opt Express 16: 9034.

    Google Scholar 

  78. Afshar SV, Ruan YL, Warren-Smith SC, Monro TM (2008) Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes. Opt Lett 33: 1473.

    Google Scholar 

  79. Ruan Y, Schartner EP, Ebendorff-Heidepriem H, Hoffmann P, Monro TM (2007) Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Opt Express 15: 17819.

    Google Scholar 

  80. Schartner EP, Jin DY, Ebendorff-Heidepriem H, Piper JA, Lu ZD, Monro TM (2012) Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization. Nanoscale 4: 7448.

    Google Scholar 

  81. Schartner EP, Jin D, Ebendorff-Heidepriem H, Piper JA, Monro TM (2012) Lanthanide upconversion nanocrystals within microstructured optical fibres; a sensitive platform for biosensing and a new tool for nanocrystal characterisation. Third Asia Pacific Optical Sensors Conference 8351.

    Google Scholar 

  82. Schartner EP, Jin DY, Zhao JB, Monro TM (2013) Sensitive detection of NaYF4: Yb/Tm nanoparticles using suspended core microstructured optical fibers. Colloidal Nanocrystals for Biomedical Applications Viii 8595.

    Google Scholar 

  83. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388: 355.

    Google Scholar 

  84. Galland C, Ghosh Y, Steinbruck A, et al. (2011) Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479: 203.

    Google Scholar 

  85. Barnes M, Mehta A, Thundat T, Bhargava R, Chhabra V, Kulkarni B (2000) On-off blinking and multiple bright states of single europium ions in Eu3+: Y2O3 nanocrystals. J Phys Chem B 104: 6099.

    Google Scholar 

  86. Chen P, Song M, Wu E, et al. (2015) Polarization modulated upconversion luminescence: single particle vs. few-particle aggregates. Nanoscale.

    Google Scholar 

  87. Wang J, Deng R, MacDonald MA, et al. (2014) Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat Mater 13: 157.

    Google Scholar 

  88. Zhang H, Li Y, Lin Y, Huang Y, Duan X (2011) Composition tuning the upconversion emission in NaYF4:Yb/Tm hexaplate nanocrystals. Nanoscale 3: 963.

    Google Scholar 

  89. Yin A, Zhang Y, Sun L, Yan C (2010) Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4:Yb,Tm nanocrystals. Nanoscale 2: 953.

    Google Scholar 

  90. Mahalingam V, Vetrone F, Naccache R, Speghini A, Capobianco JA (2009) Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv Mater 21: 4025.

    Google Scholar 

  91. Krämer KW, Biner D, Frei G, Güdel HU, Hehlen MP, Lüthi SR (2004) Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem Mater 16: 1244.

    Google Scholar 

  92. Liang L, Wu H, Hu H, Wu M, Su Q (2004) Enhanced blue and green upconversion in hydrothermally synthesized hexagonal NaY1−xYbxF4: Ln3+(Ln3+=Er3+ or Tm3+). J Alloy Compd 368: 94.

    Google Scholar 

  93. Zhou JJ, Chen GX, Zhu YB, et al. (2015) Intense multiphoton upconversion of Yb3+-Tm3+ doped beta-NaYF4 individual nanocrystals by saturation excitation. J Mater Chem C 3: 364.

    Google Scholar 

  94. Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN (2008) High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett 8: 3834.

    Google Scholar 

  95. Kolesov R, Reuter R, Xia KW, Stohr R, Zappe A, Wrachtrup J (2011) Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys Rev B 84.

    Google Scholar 

  96. Mauser N, Piatkowski D, Mancabelli T, Nyk M, Mackowski S, Hartschuh A (2015) Tip-enhancement of up-conversion photoluminescence from rare-earth ion doped nanocrystals. ACS nano.

    Google Scholar 

  97. Glass AM, Liao PF, Bergman JG, Olson DH (1980) Interaction of metal particles with adsorbed dye molecules: absorption and luminescence. Opt Lett 5: 368.

    Google Scholar 

  98. Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Analytical biochemistry 298: 1.

    Google Scholar 

  99. Dulkeith E, Morteani AC, Niedereichholz T, et al. (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89: 203002.

    Google Scholar 

  100. Saboktakin M, Ye X, Oh SJ, et al. (2012) Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS nano 6: 8758.

    Google Scholar 

  101. Zhang YH, Zhang LX, Deng RR, et al. (2014) Multicolor barcoding in a single upconversion crystal. J Am Chem Soc 136: 4893.

    Google Scholar 

  102. Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301: 1884.

    Google Scholar 

  103. Agasti SS, Liong M, Peterson VM, Lee H, Weissleder R (2012) Photocleavable DNA barcode-antibody conjugates allow sensitive and multiplexed protein analysis in single cells. J Am Chem Soc 134: 18499.

    Google Scholar 

  104. Kim SH, Shim JW, Yang SM (2011) Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays. Angew Chem Int Ed 50: 1171.

    Google Scholar 

  105. Pregibon DC, Toner M, Doyle PS (2007) Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315: 1393.

    Google Scholar 

  106. Creran B, Yan B, Moyano DF, Gilbert MM, Vachet RW, Rotello VM (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48: 4543.

    Google Scholar 

  107. Dejneka MJ, Streltsov A, Pal S, et al. (2003) Rare earth-doped glass microbarcodes. Proc Natl Acad Sci USA 100: 389.

    Google Scholar 

  108. Gorris HH, Wolfbeis OS (2013) Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew Chem Int Ed 52: 3584.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Zhejiang Provincial Natural Science Foundation of China (No. LY14E020007) and National Natural Science Foundation of China (No. 11404311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhou, J., Qiu, J. (2016). Upconversion Luminescence Behavior of Single Nanoparticles. In: Liu, RS. (eds) Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-1590-8_10

Download citation

Publish with us

Policies and ethics