Skip to main content

Abiotic Stress Tolerance Research Using-Omics Approaches

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

The effects of abiotic stress on banana production become increasingly important, but the molecular processes behind tolerance still remain largely unknown. As the genome sequence is now publically available and cutting-edge high-throughput -omics technologies emerge, there lay multiple opportunities in the offing to close the knowledge gap. This chapter gives an overview of the molecular work that has already been performed on abiotic stress tolerance in banana. This research is mostly oriented towards cold and drought, while that on nutrient deficiencies is still lagging behind. Promising results as well as important gaps are formulated, and recommendations for future abiotic stress tolerance research are proposed. We show how new -omics technologies and the integration thereof enable a holistic view on abiotic stress tolerance in banana and can enhance our knowledge. Additionally, special emphasis is placed on the ultimate importance of phenotyping and a good definition of tolerance in the context of decent molecular research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112(2):119–123

    Article  Google Scholar 

  • Carpentier S, America T (2014) Proteome analysis of orphan plant species, fact or fiction? In: Jorrin-Novo JV, Komatsu S, Weckwerth W, Wienkoop S (eds) Plant proteomics, vol 1072. Methods in molecular biology. Humana Press, New York City, pp 333–346. doi:10.1007/978-1-62703-631-3_24

    Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7(1):92–105. doi:10.1002/pmic.200600533

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Coemans B, Podevin N, Laukens K, Witters E, Matsumura H, Terauchi R, Swennen R, Panis B (2008a) Functional genomics in a non-model crop: transcriptomics or proteomics? Physiol Plant 133(2):117–130. doi:10.1111/j.1399-3054.2008.01069.x

    Article  CAS  PubMed  Google Scholar 

  • Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B (2008b) Proteome analysis of non-model plants: a challenging but powerful approach. Mass Spectrom Rev 27(4):354–377. doi:10.1002/mas.20170

    Article  CAS  PubMed  Google Scholar 

  • D’Hont A, Denoeud F, Aury J, Baurens F, Carreel F, Garsmeur O (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217. doi:10.1038/nature11241

    Article  PubMed  Google Scholar 

  • Davey MW, Graham NS, Vanholme B, Swennen R, May ST, Keulemans J (2009) Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa. BMC Genomics 10:436–436. doi:10.1186/1471-2164-10-436

    Article  PubMed  PubMed Central  Google Scholar 

  • De Langhe E, Hřibová E, Carpentier S, Doležel J, Swennen R (2010) Did backcrossing contribute to the origin of hybrid edible bananas? Ann Bot 106(6):849–857. doi:10.1093/aob/mcq187

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider S, Pal R (2013) Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14(2):91–110. doi:10.2174/1389202911314020003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horgan RP, Kenny LC (2011) ‘Omic’ technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol 13(3):189–195. doi:10.1576/toag.13.3.189.27672

    Article  Google Scholar 

  • Kissel E, van Asten P, Swennen R, Lorenzen J, Carpentier SC (2015) Transpiration efficiency versus growth: exploring the banana biodiversity for drought tolerance. Sci Hortic 185:175–182. doi:http://dx.doi.org/10.1016/j.scienta.2015.01.035

    Article  Google Scholar 

  • Liu Kai HC-H, Fa-Xiu D, Zhang Y-E, Yue-Rong W, Gan-Jun Y (2012) Over-expression of the Arabidopsis CBF1 gene in Dongguandajiao (Musa spp.ABB group) and detection of its cold resistance. Sci Agric Sin 45(8):1653–1660. doi:10.3864/j.issn.0578-1752.2012.08.022

    Google Scholar 

  • Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y, Iwasaki I, Ding X, Calamita G, Kitagawa Y (2013) Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–158. doi:http://dx.doi.org/10.1016/j.plaphy.2012.11.018

    Article  CAS  PubMed  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J 31:699–712. doi:10.1046/j.1365-313X.2002.01389.x

    Article  CAS  PubMed  Google Scholar 

  • Nyombi K, van Asten PJA, Corbeels M, Taulya G, Leffelaar PA, Giller KE (2010) Mineral fertilizer response and nutrient use efficiencies of East African highland banana (Musa spp., AAA-EAHB, cv. Kisansa). Field Crop Res 117(1):38–50. doi:http://dx.doi.org/10.1016/j.fcr.2010.01.011

    Article  Google Scholar 

  • Obiefuna JC (1984) Effect of potassium application during the floral initiation stage of plantains (Musa AAB). Fertil Res 5(3):315–319. doi:10.1007/BF01051631

    Article  CAS  Google Scholar 

  • Robinson J, Alberts A (1986) Growth and yield responses of banana (cultivar ‘Williams’) to drip irrigation under drought and normal rainfall conditions in the subtropics. Sci Hortic 30(3):187–202

    Article  Google Scholar 

  • Santos CMR, Martins NF, Hörberg HM, de Almeida ERP, Coelho MCF, Togawa RC, da Silva FR, Caetano AR, Miller RNG, Souza MT Jr (2005) Analysis of expressed sequence tags from Musa acuminata ssp. burmannicoides, var. Calcutta 4 (AA) leaves submitted to temperature stresses. Theor Appl Genet 110(8):1517–1522. doi:10.1007/s00122-005-1989-5

    Article  CAS  PubMed  Google Scholar 

  • Shekhawat UKS, Ganapathi TR (2013) MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS ONE 8(10):e75506. doi:10.1371/journal.pone.0075506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat US, Srinivas L, Ganapathi T (2011) MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234(5):915–932. doi:10.1007/s00425-011-1455-3

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, Pucci A, Gonzalez N, Hoeberichts F, Tognetti VB (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29(3):212–214

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan S, Shekhawat US, Ganapathi T (2015) Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Mol Biol 88(1–2):41–52. doi:10.1007/s11103-015-0305-2

    Article  CAS  PubMed  Google Scholar 

  • Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153:145–158. doi:10.1104/pp.110.153015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Pub Sinauer, Sunderland

    Google Scholar 

  • Vanhove A-C, Vermaelen W, Cenci A, Swennen R, Carpentier SC (2015) Data for the characterization of the HSP70 family during osmotic stress in banana, a non-model crop. Data Brief 3:78–84. doi:10.1016/j.dib.2015.01.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Wairegi LWI, van Asten PJA, Tenywa MM, Bekunda MA (2010) Abiotic constraints override biotic constraints in East African highland banana systems. Field Crop Res 117(1):146–153. doi:http://dx.doi.org/10.1016/j.fcr.2010.02.010

    Article  Google Scholar 

  • Yang Q-S, Wu J-H, Li C-Y, Wei Y-R, Sheng O, Hu C-H, Kuang R-B, Huang Y-H, Peng X-X, McCardle JA, Chen W, Yang Y, Rose JKC, Zhang S, Yi G-J (2012) Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB group) seedlings. Mol Cell Proteomics 11(12):1853–1869. doi:10.1074/mcp.M112.022079

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang Q-S, Gao J, He W-D, Dou T-X, Ding L-J, Wu J-H, Li C-Y, Peng X-X, Zhang S, Yi G-J (2015) Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics 16(1):1–18. doi:10.1186/s12864-015-1551-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Zhang JZ, Chow WS, Sun LL, Chen JW, Chen YJ, Peng CL (2011) The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars. Photosynthetica 49(2):201–208. doi:10.1007/s11099-011-0012-4

    Article  CAS  Google Scholar 

  • Zivy M, Wienkoop S, Renaut J, Pinheiro C, Goulas E, Carpentier S (2015) The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping. Front Plant Sci 6:448. doi:10.3389/fpls.2015.00448

    Article  PubMed  PubMed Central  Google Scholar 

  • Zorrilla J, Rouard M, Cenci A, Kissel E, Do H, Dubois E, Nidelet S, Roux N, Swennen R, Carpentier S (2016) Differential root transcriptomics in a polypoloid non-model crop: the importance of respiration during osmotic stress. Sci Rep 6, art.nr. 22583

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastien C. Carpentier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Kissel, E., Carpentier, S.C. (2016). Abiotic Stress Tolerance Research Using-Omics Approaches. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_6

Download citation

Publish with us

Policies and ethics