Skip to main content

Current Status of Banana Genome in the Age of Next Generation Sequencing

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

Banana (Musa spp.) is the “queen of tropical fruits.” It is one of the major staple fruits in many countries. The banana improvement program is challenging due to its complex evolutionary events, human selection, and parthenocarpy. Musa acuminata and Musa balbisiana are the progenitor species for majority of the modern cultivated bananas. The only way to accelerate the banana breeding program is to understand its genome and employing marker-assisted selection. Recently sequencing of the 523 Mb genome of a Musa acuminata – DH-Pahang provided a great fillip to the banana improvement program. Banana genome sequencing revealed the presence of around 36,000 protein coding regions, and transposable elements accounted for more than half of the genome. Earlier attempts of Bacterial artificial chromosome (BAC) sequencing of both these species showed a high degree of collinearity. In this chapter, we have summarized the current status of our understanding of the banana genome with respect to classical linkage mapping approach as well as modern next-generation sequencing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai TT, Xie WB et al (2013) Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS ONE 8(9):e73945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balint-Kurti PJ et al (2000) Identification and chromosomal localization of the monkey retrotransposon in Musa sp. Mol Gen Genet 263:908–915

    Article  CAS  PubMed  Google Scholar 

  • Cheesman EE (1932) Genetical and cytological studies in Musa. I. Certain hybrids of the Gros Michel banana; II. Hybrids of the Mysore banana. J Genet 26:219–312

    Article  Google Scholar 

  • Cheesman EE (1947) The classification of the bananas. Kew Bull 2:97–117

    Article  Google Scholar 

  • Cizkova J, Hribova E et al (2013) Molecular analysis and genomic organization of major DNA satellites in banana (Musa spp.). PLoS ONE 8:e54808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A et al (2000) The interspecific genome structure of cultivated banana, Musa spp., revealed by genomic DNA in situ hybridisation. Theor Appl Genet 100:177–183

    Article  Google Scholar 

  • D’Hont A, Denoeud F et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217

    Article  PubMed  Google Scholar 

  • D’Ocan, Mukasa H et al (2008) Effects of banana weevil damage on plant growth and yield of East African Musa genotypes. J Appl Biol Sci 9:407–415

    Google Scholar 

  • Davey MW, Van Den BI, Roux N (2011) Vitamin A biofortification in Musa: status, bottlenecks and prospects. Acta Horticult 897:169–178

    Article  Google Scholar 

  • Davey MW, Gudimella R et al (2013) draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter-and intra-specific Musa hybrids. BMC Genomics 14:683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dochez C (2004) Breeding for resistance to Radopholus similis in East African highland bananas (Musa spp.). Dissertation Katholieke Universiteit, Leuven

    Google Scholar 

  • Dochez C, Tenkouano A et al (2009) Host plant resistance to Radopholus similis in a diploid banana hybrid population. Nematology 11:329–335

    Article  Google Scholar 

  • Dolezel J (1991) Flow cytometric analysis of nuclear DNA contents in higher plants. Phytochem Anal 2:143–154

    Article  CAS  Google Scholar 

  • Dolezel J et al (1994) Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biol Plant 36:351–357

    Article  Google Scholar 

  • Dolezel J et al (1997) Use of flow cytometry for rapid ploidy determination in Musa species. Infomusa 6:6–9

    Google Scholar 

  • Dolezel J, Jain S et al (2004) Cytogenetic and cytometric analysis of nuclear genome in Musa. Banana improvement: cellular, molecular biology, and induced mutations. In: Proceedings of a meeting held in Leuven, Belgium, 24–28 September 2001, 245–249

    Google Scholar 

  • Dolezelova M et al (1998) Physical mapping of the 18S–25S and 5S ribosomal RNA genes in diploid bananas. Biol Plant 41:497–505

    Article  CAS  Google Scholar 

  • Faure S, Noyer J et al (1993) A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theor Appl Genet 87:517–526

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2015) http://faostat.fao.org

  • Harper G et al (1999) Integration of banana streak badnavirus into the Musa genome: molecular and cytogenetic evidence. Virology 255:207–213

    Article  CAS  PubMed  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2007) Domestication, genomics and the future for banana. Ann Bot 100:1073–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hippolyte I, Bakry F, Seguin M et al (2010) A saturated SSR/DArT linkage map of Musa acuminata addressing genome rearrangements among bananas. BMC Plant Biol 10:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang SC, Ko WH (2004) Cavendish banana cultivars resistant to fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis 88(6):580–588

    Article  Google Scholar 

  • Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:385–398

    Article  Google Scholar 

  • Jones CT, Morrice DR et al (1997) Gene homologs on human chromosome 15q21–q26 and a chicken microchromosome identify a new conserved segment. Mamm Genome 8:436–440

    Article  CAS  PubMed  Google Scholar 

  • Kahl G, Jain Set al (2004) The banana genome in focus: a technical perspective. Banana improvement: cellular, molecular biology, and induced mutations. In: Proceedings of a meeting held in Leuven, Belgium, 24–28 September 2001, pp 263–270

    Google Scholar 

  • Kayat F, Bonar N et al (2009) Development of a genetic linkage map for genes associated with resistance and susceptibility to Fusarium oxysporum f. sp. cubense from an F1 hybrid population of Musa acuminata ssp. Malaccensis. Acta Hortic 828:333–340

    Article  CAS  Google Scholar 

  • Lee WS, Gudimella R et al (2015) Transcripts and MicroRNAs responding to salt stress in Musa acuminata Colla (AAA Group) cv. Berangan roots. PLoS ONE 10(5):e0127526. doi:10.1371/journal.pone.0127526

    Article  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Piffanelli P et al (2008) Insights into the Musa genome: syntenic relationships to rice and between Musa species. BMC Genomics 9:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Deng G et al (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Shao J, Wang Y et al (2013) Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. Cubense. BMC Genomics 14:851

    Article  PubMed  PubMed Central  Google Scholar 

  • Lysak MA et al (1999) Flow cytometric analysis of nuclear DNA content in Musa. Theor Appl Genet 98:1344–1350

    Article  CAS  Google Scholar 

  • Martin G, Baurens FC et al (2016) Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics 17:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbanjo EGN, Tchoumbougnang F et al (2012) Molecular marker-based genetic linkage map of a diploid banana population (Musa acuminata Colla). Euphytica 188:369–386

    Article  Google Scholar 

  • Molina AB, Williams RC et al (2012) Mitigating the threat of banana Fusarium wilt: understanding the agroecological distribution of pathogenic forms and developing disease management strategies, Volume report number FR 2010–12. Australia: ACIAR, GPO Box 1571, Canberra ACT 2601. ISBN 978 1 921738 17 3

    Google Scholar 

  • Noyer JL, Dambier D et al (1997) The saturated map of diploid Banana (Musa acuminata). Plant and Animal Genome: January 12–16 1997, San Diego 1997. Abstract P335

    Google Scholar 

  • Pillay M, Tenkouano A (2011) Banana breeding: progress and challenges. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pollefeys P, Sharrock S, Arnaud E (2004) Preliminary analysis of the literature on the distribution of wild Musa species using MGIS and DIVA-GIS. INIBAP, Montpellier. http://bananas.bioversityinternational.org/files/files/pdf/publications/wildspecies_pollefeys.pdf. Accessed July 2007

    Google Scholar 

  • Price NS (1995) The origin and development of banana and plantain cultivation. In: Bananas and plantains. Chapman and Hall, London

    Google Scholar 

  • Ravishankar KV, Megha HS, Rekha A, Khadke GN, Veerraju CH (2015) Insights into Musa balbisiana and Musa acuminata species divergence and development of genic microsatellites by transcriptomics approach. Plant Genet 4:78–82

    Article  Google Scholar 

  • Robinson JC, Sauco VG (2010) Bananas and plantains. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Shepherd K (1999) Cytogenetics of the genus Musa. INIBAP, Montpellier

    Google Scholar 

  • Simmonds NW (1962) The evolution of the bananas. Longmans, London

    Google Scholar 

  • The banana genome hub. http://banana-genome.cirad.fr/content/musa-balbisiana-pisang-klutuk--

  • The Global Musa consortium. http://musagenomics.org/

  • Thomas DS, Turner DW (2001) Banana (Musa sp.) leaf gas exchange and chlorophyll fluorescence in response to soil drought, shading and lamina folding. Sci Hortic 90:93–108

    Article  CAS  Google Scholar 

  • Udall JA, Quijada PA et al (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169(2):967–979. doi:10.1534/genetics.104.033209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilarinhos AD (2004) Cartographie ge’ne’tique et cytoge’ne’tique chez le bananier: caracte’risation des translocations. Dissertation, Ecole Nationale Supe’rieure Agronomique Montpelier, Montpellier

    Google Scholar 

  • Wang Z, Jia C et al (2015) Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish). Funct Integr Genom 15(1):47–62

    Article  CAS  Google Scholar 

  • Yang QS, Gao J et al (2015) Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics 16(1):446

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kundapura V. Ravishankar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sampangi-Ramaiah, M.H., Ravishankar, K.V. (2016). Current Status of Banana Genome in the Age of Next Generation Sequencing. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_4

Download citation

Publish with us

Policies and ethics