Skip to main content

Transgenic Approaches to Improve Resistance to Nematodes and Weevils

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

Banana and plantain are important staple crops for Africa and important fruit crops for Asia, Latin America and Caribbean islands. Several nematode species and rhizome weevil (Cosmopolites sordidus) are major pests in banana that cause heavy damage and revenue loss. Pesticides and biocontrol agents control the pests, but pesticide residues pose severe environmental problems. Conventional breeding is a difficult and slow process due to the limited sources of resistance, sterility of cultivated banana varieties, polyploidy levels, long cropping cycle and the lack of rapid screening methods. Genetic engineering is considered as one of the eco-friendly and safer methods to control these pests. This review discusses the seriousness of the problem, the status and source of pest resistance and the mechanisms involved. The availability of various genes with potential to control nematodes and weevils is discussed. Further, current efforts and future prospects for identifying natural resistance genes and RNAi-based defences with potential to control nematode and banana weevil in a transgenic approach are outlined and discussed. Nematode-resistant transgenic banana cultivars expressing rice or maize cystatin genes and peptides evaluated under field conditions and those weevil-resistant cultivars developed using papaya cystatin gene with enhanced inhibitory potential are discussed in the light of biosafety concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    Article  CAS  PubMed  Google Scholar 

  • Ashouri A, Michaud D, Cloutier C (2001) Recombinant and classically selected factors of potato plant resistance to the Colorado potato beetle, Leptinotarsa decemlineata, variously affect the potato aphid parasitoid Aphidius nigripes. Biocontrol 46:401–418

    Article  Google Scholar 

  • Atkinson HJ (2003) Strategies for resistance to nematodes in Musa spp. In: Atkinson HJ, Dale HJ, Harding R, Kiggundu A, Kunert K, Muchwezi JM, Sagi L, Viljoen A (eds) Genetic transformation strategies to address the major constraints to banana and plantain production in Africa. INIBAP, Montpellier, pp 74–107

    Google Scholar 

  • Atkinson HJ, Johnston KA, Robbins M (2004a) Prima facie evidence that a phytocystatin for transgenic plant resistance to nematodes is not a toxic risk in the human diet. J Nutr 134:431–434

    CAS  PubMed  Google Scholar 

  • Atkinson HJ, Grimwood S, Johnston K, Green J (2004b) Prototype demonstration of transgenic resistance to the nematode Radopholus similis conferred on banana by a cystatin. Transgenic Res 13:135–142

    Article  CAS  PubMed  Google Scholar 

  • Atkinson HJ, Urwin PE, Hussey RS (2009) Plant biotechnology and control. In: Perry RN, Moens M, Starr JL (eds) Root knot nematodes. CABI, Wallingford, pp 338–362

    Chapter  Google Scholar 

  • Auer C, Frederick R (2009) Crop improvement using small RNAs: applications and predictive ecological risk assessments. Trends Biotechnol 27:644–651

    Article  CAS  PubMed  Google Scholar 

  • Bakaze E (2010) Evaluation of Bacillus thuringiensis crystal (CRY6A) and carica papaya cystatin toxins against the banana weevil (Cosmopolites sordidus) using a novel diet and construction of a plant transformation vector with two stacked toxin genes. http://hdl.handle.net/10570/3967

  • Bakhetia M, Urwin PE, Atkinson HJ (2008) Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi. Int J Parasitol 38:1589–1597

    Article  CAS  PubMed  Google Scholar 

  • Balachowsky AS (1963) Entomologie appliquée à l’agriculture. Traité I 2:1099–1114

    Google Scholar 

  • Bird DM, Williamson VM, Opperman CH (2015) Exploiting solved genomes of plant-parasitic nematodes to understand parasitism. Adv Bot Res 73:241–258

    Article  CAS  Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34:1453–1466

    Article  CAS  PubMed  Google Scholar 

  • Brentu CF, Speijer PR, Green K, Hemeng B, De Waele D, Coyne DL (2004) Micro-plot evaluation of the yield reduction potential of Pratylenchus coffeae, Helicotylenchus multicinctus and Meloidogyne javanica on plantain cv. Apantu-pa (Musa spp., AAB-group) in Ghana. Nematology 6:455–462

    Google Scholar 

  • Bridge J, Price NS, Kofi P (1995) Plant parasitic nematodes of plantain and other crops in Cameroon, West Africa. Fundam Appl Nematol 18:251–260

    Google Scholar 

  • Burke M, Scholl EH, Bird DM, Schaff JE, Coleman S, Crowell R, Diener S, Gordon O, Graham S, Wang X, Windham E (2015a) The plant parasite Pratylenchus coffeae carries a minimal nematode genome. Nematology 17:621–637

    Article  CAS  Google Scholar 

  • Burke M, Scholl EH, Bird DM, Schaff JE, Coleman S, Crowell R, Diener S, Gordon O, Graham S, Wang X, Windham E, Wright GM, Opperman C (2015b) The plant parasite Pratylenchus coffeae carries a minimal nematode genome. Nematology 00:1–17

    Google Scholar 

  • Burrows PR, de Waele D (1997) Engineering resistance against plant parasitic nematodes using anti-nematode genes. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions. Kluwer Academic Press, Dordrecht, pp 217–236

    Chapter  Google Scholar 

  • Cai DG, Kleine M, Kifle S, Harloff HJ, Sandal NN (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  CAS  PubMed  Google Scholar 

  • Chan YL, Yang AH, Chen JT, Yeh KW, Chan MT (2010) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep 29:231–238

    Article  CAS  PubMed  Google Scholar 

  • Charlton WC, Harel HYM, Bakhetia M, Hibbard JK, Atkinson HJ, McPherson MJ (2010) Additive effects of plant expressed double-stranded RNAs on root-knot nematode development. Int J Parasitol 40:855–864

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84

    Article  CAS  PubMed  Google Scholar 

  • Duck N, Evola S (1997) Use of transgenes to increase host plant resistance to insects opportunities and challenges. In: Carozi N, Koziel M (eds) Advances in insect control the role of transgenic plants. Taylor and Francis, London, pp 45–56

    Google Scholar 

  • Duncan L, Moens M (2006) Migratory endoparasitic nematodes. In: Perry RN, Moens M (eds) Plant nematology. CABI Publishing, Wallingford, pp 123–152

    Chapter  Google Scholar 

  • Fabrick J, Behnke C, Czapla T, Bala K, Rao AG, Kramer KJ, Reeck GR (2002) Effects of a potato cysteine proteinase inhibitor on midgut proteolytic enzyme activity and growth of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera: Chrysomelidae). Insect Biochem Mol Biol 32:405–415

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2014) faostat.fao.org/default.aspx

  • Ferris H, Bongers T, de Goede RGM (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Fogain R, Price NS (1994) Varietal screening of some Musa cultivars for susceptibility to the banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae). Fruits 49:247–251

    Google Scholar 

  • Fogain R, Messiaen S, Foure E (2002) Studies on the banana borer weevil in Cameroon. InfoMusa 11(1):XII

    Google Scholar 

  • Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse AMRK, Butler KJ, Fenton KA, Gatehouse JA (1985) Presence and partial characterization of a major proteolytic enzyme in the gut of larval Callosobruchus maculatus. Entomol Exp Appl 39:279–286

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Daavison GM, Newell CA, Merryweather A, Hamilton WDO, Burgues EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to tomato moth, Lacanobia oleracea, growth room trials. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Gerald RR, Kramer KJ, Baker JE, Kanost JF, Behke CA (1997) Proteinase inhibitors and resistance of transgenic plants to insects. In: Carozi N, Koziel M (eds) Advances in insect control the role of transgenic plants. Taylor and Francis, London, pp 157–183

    Google Scholar 

  • Gold CS (1998) Banana weevil: ecology pest status and prospects for integrated control with emphasis on East Africa. In: Saini SK (ed) Proceedings of a symposium on biological control in tropical habitats: third international conference on tropical entomology. ICIPE, Nairobi, pp 49–74

    Google Scholar 

  • Gold CS, Messiaen S (2000) The banana weevil Cosmopolites sordidus. MusaPest INIBAP Fact Sheet No 4

    Google Scholar 

  • Gold CS, Karamura EB, Kiggundu A, Bagamba F, Abera AMK (1999) Geographic shifts in highland cooking banana (Musa spp. group AAA-EA) production in Uganda. Int J Sustain Dev World Ecol 6:45–59

    Article  Google Scholar 

  • Gowen S, Quénéhervé P (1990) Nematode parasites of bananas, plantains and abaca. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 431–460

    Google Scholar 

  • Green J, Wang D, Lilley CJ, Urwin PE, Atkinson HJ (2012) Transgenic potatoes for potato cyst nematode control can replace pesticide use without impact on soil quality. PLoS One 7:e30973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haegeman A, Vanholme B, Gheysen G (2009) Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis. Mol Plant Pathol 10:389–401

    Article  CAS  PubMed  Google Scholar 

  • Haegeman A, Elsen A, De Waele D, Gheysen G (2010) Emerging molecular knowledge on Radopholus similis, an important nematode pest of banana. Mol Plant Pathol 11:315–323

    Article  PubMed  Google Scholar 

  • Huang GZ, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci U S A 103:14302–14306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubank M, Schatz DG (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22:5640–5648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HMM, Alkharouf NW, Meyer SLF, Aly MAM, Gamal El-Din AY, Hussein EHA, Matthews BF (2011) Post-transcriptional gene silencing of root-knot nematode in transformed soybean roots. Exp Parasitol 127:90–99

    Article  CAS  PubMed  Google Scholar 

  • Ingham ER (2000) Nematodes. In: Tugel A, Lewandowski A, Happe-von Arb D (eds) Soil biology primer (rev ed.). Soil and Water Conservation Society, Ankeny

    Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed -amylase inhibitor of common bean. Entomol Exp Appl 79:309–315

    Article  CAS  Google Scholar 

  • Jacob JEM, Vanholme B, Van Leeuwen T, Gheysen G (2009) A unique genetic code change in the mitochondrial genome of the parasitic nematode Radopholus Similis. BMC Res Notes 2:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joseph S, Gheysen G, Subramaniam K (2012) RNA interference in Pratylenchus coffeae: knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Mol Biochem Parasitol 186:51–59

    Article  CAS  PubMed  Google Scholar 

  • Jouanin L, Bonade-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131:1–11

    Article  CAS  Google Scholar 

  • Kashaija IN, Speijer PR, Gold CS, Gowen SC (1994) Occurrence, distribution and abundance of plant parasitic nematodes of bananas in Uganda. Afr Crop Sci J 2:99–104

    Google Scholar 

  • Kiggundu A (2000) Host-plant interactions and resistance mechanisms to banana weevil Cosmopolites sordidus (Germar) in Ugandan Musa germplasm. M.Sc. Thesis. University of the Orange Free State, Bloemfontain, South Africa

    Google Scholar 

  • Kiggundu A, Kunert K Viljoen A, Pillay M, Gold CS (2002) Designing inhibitors for banana weevil control p21. Abstracts 3rd International symposium on molecular and cellular biology of bananas

    Google Scholar 

  • Kiggundu A, Gold CS, Labuschagne M, Vuylsteke D, Louw SVDM (2003a) Levels of host plant resistance to banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) in African Musa germplasm. Euphytica 133:267–277

    Article  Google Scholar 

  • Kiggundu A, Pillay M, Viljoen A, Gold C, Tushemereirwe W, Kunert K (2003b) Enhancing banana weevil (Cosmopolites sordidus) resistance by genetic modification: a perspective. Afr J Biotechnol 2:563–569

    Article  CAS  Google Scholar 

  • Kiggundu A, Goulet MC, Goulet C, Dubuc J-F, Rivard D, Benchabane M, Pe’pin G, Van der Vyver C, Kunert K, Michaud D (2006) Modulating the proteinase inhibitory profile of a plant cystatin by single mutations at positively selected amino acid sites. Plant J 48:403–413

    Article  CAS  PubMed  Google Scholar 

  • Kiggundu A, Muchwezi J, Van Der Vyvr C, Viljoen A, Vorster J, Schluter U, Kunert K, Michaud D (2010) Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus. Arch Insect Biochem Physiol 73(2):87–105

    CAS  PubMed  Google Scholar 

  • Klink VP, Kim KH, Martins V, MacDonald MH, Beard HS, Alkharouf NW, Lee SK, Park SC, Matthews BF (2009) A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max. Planta 230:53–71

    Article  CAS  PubMed  Google Scholar 

  • Krettiger AF (1997) Insect resistance in crops: a case study of Bacillus (Bt.) and its transfer to developing countries. International Service for the Acquisition of Agri-biotech Applications, Ithaca

    Google Scholar 

  • LeBerre-Anton V, Bompard-Gilles C, Payan F, Rouge P (1997) Characterization and functional properties of the alpha-amylase inhibitor (alpha A-1) from kidney bean (Phaseolus vulgaris) seeds. Biochim Biophys Acta 1343:31–40

    Article  CAS  Google Scholar 

  • Leple JC, Bonadebottino M, Augustin S, Pilate G, Letan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera, Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328

    Article  CAS  Google Scholar 

  • Li X-Q, Tan A, Voegtline M, Bekele S, Chen C-S, Aroian (2008) Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control 47:97–102

    Article  CAS  Google Scholar 

  • Li J, Todd TC, Oakley TR, Lee J, Trick HN (2010) Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe. Planta 232:775–785

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang K, Xie H (2015a) Cathepsin B cysteine proteinase is essential for the development and pathogenesis of the plant parasitic nematode Radopholus similis. Int J Biol Sci 11:1073–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wang K, Xie H, Wang YT, Wang DW (2015b) A nematode calreticulin, Rs-CRT, is a key effector in reproduction and pathogenicity of Radopholus similis. PLoS One 10:e0129351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lilley CJ, Urwin PE, Johnston KA, Atkinson HJ (2004) Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. Plant Biotechnol J 2:3–12

    Article  CAS  PubMed  Google Scholar 

  • Lilley CJ, Bakhetia M, Charlton WL, Urwin PE (2007) Recent progress in the development of RNA interference for plant parasitic nematodes. Mol Plant Pathol 8:701–711

    Article  CAS  PubMed  Google Scholar 

  • Lilley CJ, Wang D, Atkinson HJ, Urwin PE (2011a) Effective delivery of a nematode-repellent peptide using a root cap-specific promoter. Plant Biotechnol J 9:151–161

    Article  CAS  PubMed  Google Scholar 

  • Lilley CJ, Kyndt T, Gheysen G (2011b) Nematode resistant GM crops in industrialised and developing countries. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Heidelberg, pp 515–539

    Google Scholar 

  • Lorenzen J, Tenkouano A, Bandyopadhyay R, Vroh B, Coyne D, Tripathi L (2010) Overview of banana and plantain (Musa spp.) improvement in Africa: past and future. Acta Hortic 879:595–603

    Article  Google Scholar 

  • Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155:1693–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • McSorley R, Parrado JL (1983) The spiral nematode, Helicotylenchus multicinctus, on bananas in Florida and its control. Proc Fla State Hortic Soc 96:201–207

    Google Scholar 

  • Mesquita ALM, Alvers EJ, Caldas RC (1984) Resistance of banana cultivars to Cosmopolites sordidus (GERMAR, 1824). Fruits 39:254–257

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moens T, Araya M, Swennen R, De Waele D (2006) Reproduction and pathogenicity of Helicotylenchus multicinctus, Meloidogyne incognita and Pratylenchus coffeae, and their interaction with Radopholus similis on Musa. Nematology 8:45–58

    Article  Google Scholar 

  • Morton RL, Schoroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean-amylase inhibitor-I in transgenic peas (Pisum sativum) provided complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci 97:3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murdock LL, Brookhart G, Dunn PE, Foard DE, Kelley S, Kitch L, Shade RE, Shuckle RH, Wolfson JL (1987) Cysteine digestive proteinases in Coleoptera. Comp Biochem Physiol 87B:783–787

    CAS  Google Scholar 

  • Namuddu A, Kiggundu A, Mukasa SB, Kurnet K, Karamura E, Tushemereirwe W (2013) Agrobacterium mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (ABB) with a modified Carica papaya cystatin (CpCYS) gene. Afr J Biotechnol 12(15):1811–1819

    Article  CAS  Google Scholar 

  • Nutt KA, Allsopp PG, McGhie TK, Shepaerd KM, Joyce PA, Taylo GO, McQualter RB, Smith GR, Ogarth DM (1999) Transgenic sugarcane with increased resistance to canegrubs. Proceedings of the 1999 Conference of Australian Society of Sugarcane Technologies, Brisbane, Australia, pp 171–176

    Google Scholar 

  • Ocimati W, Kiggundu A, Bailey A, Niblett CL, Pedun H, Tazuba AF, Tushemereirwe W, Karamura E (2004) Suppression of the ubiquitin E2 gene through RNA interference causes mortality in the banana weevil, Cosmopolites sordidus (Germar)

    Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105:14802–14807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz R, Vuylsteke D (1996) Improving plantain and banana-based systems. In: Ortiz R, Akoroda MO (eds) Plantain and banana production and research in West and Central Africa. IITA, Ibadan, pp 2–7

    Google Scholar 

  • Ortiz R, Vuylsteke D, Dumpe B, Ferris RSB (1995) Banana weevil resistance and corm hardness in Musa germplasm. Euphytica 86:95–102

    Article  Google Scholar 

  • Ostmark HE (1974) Economic insect pests of bananas. Ann Rev Entomol 19:161–176

    Article  Google Scholar 

  • Padmanaban B, Sundararaju P, Velayudhan KC, Sathiamoorthy S (2001) Evaluation of Musa germplasm against banana weevil borers. InfoMusa 10:26–28

    Google Scholar 

  • Patel N, Hamamouch N, Li CY, Hussey RS, Mitchum M, Baum T, Wang X, Davis EL (2008) Similarity and functional analyses of expressed parasitism genes in Heterodera schachtii and Heterodera glycines. J Nematol 40:299–310

    CAS  Google Scholar 

  • Patel N, Hamamouch N, Li CY, Hewezi T, Hussey RS, Baum T, Mitchum M, Davis EL (2010) A nematode effector protein similar to annexins in host plants. J Exp Bot 61:235–248

    Article  CAS  PubMed  Google Scholar 

  • Pernas M, Sanchez-Mong R, Salcedo G (2000) Biotic and abiotic stress can induce cystatin expression in chestnut. FEBS Lett 467:206–210

    Article  CAS  PubMed  Google Scholar 

  • Pinochet J (1988) Comments on the difficulty in breeding bananas and plantains for resistance to nematodes. Rev Nematol 11:3–5

    Google Scholar 

  • Price NS (1994) Alternate cropping in the management of Radopholus similis and Cosmopolites sordidus two important pests of banana and plantain. Int J Pest Manage 40:237–244

    Google Scholar 

  • Price NS (2006) The banana burrowing nematode, Radopholus similis (Cobb) Thorne, in the Lake Victoria region of East Africa: its introduction, spread and impact. Nematology 8:801–817

    Article  Google Scholar 

  • Reynolds AM, Dutta TK, Curtis RHC, Powers SJ, Gaur HS, Kerry BR (2011) Chemotaxis can take plant-parasitic nematodes to the source of a chemo-attractant via the shortest possible routes. J R Soc Interface 8:568–577

    Article  PubMed  Google Scholar 

  • Robinson JC (1996) Bananas and plantain. CABI, Wallingford

    Google Scholar 

  • Roderick H, Tripathi L, Babirye A, Wang D, Tripathi JN, Urwin PE, Atkinson HJ (2012) Generation of transgenic plantain (Musa spp.) with resistance to plant pathogenic nematodes. Mol Plant Pathol 13:842–851

    Article  CAS  PubMed  Google Scholar 

  • Rosso MN, Jones JT, Abad P (2009) RNAi and functional genomics in plant parasitic nematodes. Annu Rev Phytopathol 47:207–232

    Article  CAS  PubMed  Google Scholar 

  • Rukazambuga NDTM, Gold CS, Gowen SR (1998) Yield loss in East African Highland Banana (Musa spp., AAA-EA group) caused by the banana weevil, Cosmopolites sordidus Germar. Crop Protect 17:1–9

    Article  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Plant Physiol Plant Mol Biol 28:425–449

    CAS  Google Scholar 

  • Sasser JN, Freckman DW (1987) A world perspective on nematology: the role of the society. In: Veech JA, Dickerson DW (eds) Vistas on nematology. USA Society of Nematologists, Hyatsville, pp 7–14

    Google Scholar 

  • Sengooba T (1986) Survey of banana pest problem complex in rakai and masaka districts, Preliminary trip report, Uganda ministry of agriculture, Kawanda Agricultural Research Station, 10 pp

    Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Ortiz R (2000) Prospects for using transgenic resistance to insects in crop improvement. EJB Electron J Biotechnol 3(2) http://www.ejb.org/content/vol3/issue2/full/3

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60:315–324

    Article  CAS  PubMed  Google Scholar 

  • Swennen R, Vuylsteke D (2001) Banana Musa L. In: Raemaekers RH (ed) Crop production in tropical Africa. DGIC Brussels, Belgium, pp 530–552

    Google Scholar 

  • Tan JACH, Jones MGK, Fosu-Nyarko J (2013) Gene silencing in root lesion nematodes (Pratylenchus spp.) significantly reduces reproduction in a plant host. Exp Parasitol 133:166–178

    Article  CAS  PubMed  Google Scholar 

  • Tinjuangjun P (2002) Snowdrop lectin gene in transgenic plants: its potential for Asian agriculture Agbiotechnet.com (ABN091)

    Google Scholar 

  • Tripathi L, Babirye A, Roderick H, Tripathi JN, Changa C, Urwin PE, Tushemereirwe WK, Coyne D, Atkinson HJ (2015) Field resistance of transgenic plantain to nematodes has potential for future African food security. Sci Rep 5:8127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urwin PE, Atkinson HJ, Waller DA, McPherson MJ (1995) Engineered oryzacystatin I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8:121–131

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ (1997) Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 12:455–461

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, McPherson MJ, Atkinson HJ (1998) Enhanced transgenic plant resistance to nematodes by dual protease inhibitor constructs. Planta 204:472–479

    Article  CAS  PubMed  Google Scholar 

  • Urwin PE, Troth KM, Zubko EI, Atkinson HJ (2001) Effective transgenic resistance to Globodera pallida in potato field trials. Mol Breed 8:95–101

    Article  CAS  Google Scholar 

  • Urwin PE, Green J, Atkinson HJ (2003) Expression of a plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistance. Mol Breed 12:263–269

    Article  CAS  Google Scholar 

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J (1998) Expression of an engineered cysteine Proteinase inhibitor (Oryzacystatin- IΔD86) for nematode resistance in transgenic rice plants. Theoretical Appl Genet 96(2):266–271

    Article  CAS  Google Scholar 

  • van der Vossen EAG, van der Voort J, Kanyuka K, Bendahmane A, Sandbrink H (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    Article  PubMed  Google Scholar 

  • Vieira P, Wantosh S, Lilley CJ, Chitwood DJ, Atkinson HJ, Kamo K (2014) Expression of a cystatin transgene can confer resistance to root lesion nematodes in Lilium longiflorum cv. Nellie White. Transgenic Res 24(3):421–432

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Jones LM, Urwin PE, Atkinson HJ (2011) A synthetic peptide shows retro- and anterograde neuronal transport before disrupting thermo chemosensation of plant-pathogenic nematodes. PLoS One 6:e17475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JZ, Hale K, Cara L, Platzer E, Wong C, Fang SC, Raffi V (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 10:2760–2765

    Article  CAS  Google Scholar 

  • Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  CAS  PubMed  Google Scholar 

  • Willson WD, Flint HM, Deaton RW, Fischhoff DA, Perlak FJ, Armstrong TA, Fusch RL, Berberich SA, Parks NJ, Stapp BR (1992) Resistance of cotton lines containing Bacillus thuringinensis toxin to pink bollworm (Lepidoptera: Gelechiidae) and other insects. J Econ Entomol 85:1516–1521

    Article  Google Scholar 

  • Winter MD, McPherson MJ, Atkinson HJ (2002) Neuronal uptake of pesticides disrupts chemosensory cells of nematodes. Parasitology 125:561–565

    CAS  PubMed  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  CAS  PubMed  Google Scholar 

  • Ye GY, Yao HW, Shu QY, Cheng X, Hu C, Xia YW, Gao MW, Altosaar I (2003) High levels of stable resistance in transgenic rice with cry1Ab gene from Bacillus thuringiensis Berliner to rice leaffolder, Cnaphalocrocis medilinalis (guenee) under field conditions. Crop Protect 22:171–178

    Article  CAS  Google Scholar 

  • Yu Z, Xiong J, Zhou Q, Luo H, Hu S, Xia L, Sun M, Li L, Yu Z (2015) The diverse nematicidal properties and biocontrol efficacy of Bacillus thuringiensis Cry6A against the root-knot nematode Meloidogyne hapla. J Invertebr Pathol 125:73–80

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Peng D, Ye X, Yu Z, Hu Z, Ruan L, Sun M (2012) In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLOS One. http://dx.doi.org/10.1371/journal.pone.0038534

Download references

Acknowledgement

The author, Poovarasan, S., acknowledges Dr. A. Kiggundu for providing information on weevils which facilitated this writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Roderick, H., Tripathi, L., Poovarasan, S. (2016). Transgenic Approaches to Improve Resistance to Nematodes and Weevils. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_17

Download citation

Publish with us

Policies and ethics