Skip to main content

Transgenic Technologies for Bacterial Wilt Resistance

  • Chapter
  • First Online:
Banana: Genomics and Transgenic Approaches for Genetic Improvement

Abstract

Banana production is severely affected by bacterial diseases jeopardizing the food security of millions of inhabitants in countries where farmers depend upon banana as staple food. Bacterial diseases like Xanthomonas wilt, Moko, blood, and Bugtok are the most important diseases threatening banana cultivation in several tropical and subtropical countries. Genetic improvement of banana through classical breeding is difficult due to the lack of resistant germplasm, sterile nature, and long generation time. Transgenic technology can complement classical breeding for developing bacterial disease-resistant varieties. Some success has been achieved for developing host plant resistance in order to control banana Xanthomonas wilt (BXW) disease. Currently, the transgenic bananas expressing either sweet pepper Pflp or Hrap gene are under evaluation for resistance to Xanthomonas wilt disease in field trials in Uganda. Management of bacterial diseases through cultural practices like removal of male buds and use of pathogen-free seed material and disinfected cutting tools can contain outbreak of diseases although these are not absolute solutions for control of bacterial diseases. In this chapter, we have discussed various management practices as well as existing transgenic technologies to control bacterial diseases of banana.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abele S, Pillay M (2007) Bacterial wilt and drought stresses in banana production and their impact on economic welfare in Uganda: implications for banana research in East African highlands. J Crop Improv 19:173–191. doi:10.1300/J411v19n01_09

    Article  Google Scholar 

  • Arce P, Moreno M, Gutierrez M, Gebauer M, Dell’Orto P, Torres H, Acuna I, Oliger P, Venegas A, Jordana X, Kalazich J, Holuigue L (1999) Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76:169–177. doi:10.1007/BF02853582

    Article  CAS  Google Scholar 

  • Aritua V, Parkinson N, Thwaites R, Heeney JV, Jones DJ, Tushemereirwe W, Crozier J, Reeder R, Stead DE, Smith J (2007) Characterization of the Xanthomonas sp. causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathol 57:170–177. doi:10.1111/j.1365-3059.2007.01687.x

    Google Scholar 

  • Bagamba F, Kikulwe E, Tushemereirwe WK, Ngambeki D, Muhangi J, Kagezi GH, Ragama PE, Eden-Green S (2006) Awareness of banana bacterial wilt control in Uganda: farmers’ perspective. Afr Crop Sci J 14:157–164. doi:10.4314/acsj.v14i2.27923

    Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa sp. AAA group) cv. Grand Nain via microprojectile bombardment. Plant Cell Rep 19:229–234. doi:10.1007/s002990050004

    Article  CAS  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8:1757–1771. doi:10.1105/tpc.8.10.1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bent AF, Yu IC (1999) Applications of molecular biology to plant disease and insect resistance. Adv Agron 66:251–298. doi:10.1016/S0065-2113(08)60429-0

    Article  CAS  Google Scholar 

  • Boman HG, Hultmark D (1987) Cell free immunity in insects. Annu Rev Microbiol 41:103–126. doi:10.1146/annurev.mi.41.100187.000535

    Article  CAS  PubMed  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defence system. Plant Physiol 108:1353–1358. doi:10.1104/pp.108.4.1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buregyeya H (2010) Evaluation of the contribution of birds, bats and farm tools in the long distance transmission of banana bacterial wilt; Masters’ thesis, Makerere University, Kampala Uganda

    Google Scholar 

  • Cao H, Li X, Dong X (1998) Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536. doi:PNAS-1998-Cao-6531-6xccf

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmona MJ, Molina A, Fernandez JA, Lopez-Fando JJ, Garcia-Olmedo F (1993) Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3:457–462. doi:10.1111/j.1365-313X.1993.tb00165.x

    Article  CAS  PubMed  Google Scholar 

  • Carter BA, Reeder R, Mgenzi SR, Kinyua ZM, Mbaka JN, Doyle K, Nakato V, Mwangi M, Beed F, Aritua V, Lewis Ivey ML, Miller SA, Smith JJ (2009) Identification of Xanthomonas vasicola (formerly X. campestris pv. musacearum), causative organism of banana Xanthomonas wilt, in Tanzania, Kenya and Burundi. New Dis Rep 19:25. doi:10.1111/j.1365-3059.2009.02124.x

    Google Scholar 

  • Cary JW, Rajasekaran K, Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171–181. doi:10.1016/S0168-9452(00)00189-8

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596. doi:10.1007/s00425-002-0918-y

    CAS  PubMed  Google Scholar 

  • Chen CH, Lin HJ, Feng TY (1998) An amphipathic protein from sweet pepper can dissociate harpinPSS multimeric forms and intensify the harpinPSS-mediated hypersensitive response. Physiol Mol Plant Pathol 52:139–149. doi:10.1006/pmpp.1997.0120

    Article  CAS  Google Scholar 

  • Chen CH, Lin HJ, Ger MJ, Chow D, Feng TY (2000) The cloning and characterization of a hypersensitive response assisting protein that may be associated with the harpin-mediated hypersensitive response. Plant Mol Biol 43:429–438. doi:10.1023/A:1006448611432

    Article  CAS  PubMed  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Over-expression of a rice NPR1 homolog leads to constitutive activation of defence response and hypersensitivity to light. MPMI 18:511–520. doi:10.1094/MPMI-18-0511

    Article  CAS  PubMed  Google Scholar 

  • Dayakar BV, Lin HJ, Chen CH, Ger MJ, Lee BH, Pai CH, Chow D, Huang HE, Hwang SY, Chung MC, Feng TY (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin(pss)-mediated hypersensitive response shows an enhanced production of active oxygen species(AOS). Plant Mol Biol 51:913–924. doi:10.1023/A:1023061303755

    Article  CAS  PubMed  Google Scholar 

  • De Gray G, Rajasekaran K, Smith F, Sanford J, Daniell H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852–862. doi:10.1104/pp.010233

    Article  Google Scholar 

  • Deslandes L, Pileur F, Liaubet L, Camut S, Can C, Williams K, Holub E, Beynon J, Arlat M, Marco Y (1998) Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. MPMI 11:659–667. doi:10.1094/MPMI.1998.11.7.659

    Article  CAS  PubMed  Google Scholar 

  • Düring K, Porsch P, Fladung M, Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598. doi:10.1046/j.1365-313X.1993.03040587.x

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209. doi:10.1146/annurev.phyto.42.040803.140421

    Article  CAS  PubMed  Google Scholar 

  • Durell SR, Raghunathan G, Guy HR (1992) Modeling the ion channel structure of cecropin. Biophys J 63:1623–1631. doi:10.1016/S0006-3495(92)81730-7

    Google Scholar 

  • Eden-Green S (2004) Focus on bacterial wilt. How can the advance of banana Xanthomonas wilt be halted? Infomusa 13:38–41

    Google Scholar 

  • Fegan F, Prior P (2004) How complex is the Ralstonia solanacearum species complex. In: Allen C, Prior P, Hayward AC (eds) Bacterial wilt: the disease and Ralstonia solanacearum species complex. APS Press, St Paul

    Google Scholar 

  • Feng JX, Cao L, Li J, Duan CJ, Xue-Mei Luo XM, Le N, Wei H, Liang S, Chu C, Pan Q, Tang JL (2011) Involvement of OsNPR1/NH1 in rice basal resistance to blast fungus Magnaporthe oryzae. Eur J Plant Pathol 131:221–235. doi:10.1007/s10658-011-9801-7

    Article  CAS  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of the embryogenic cell suspensions of the banana cultivars Rasthali (AAB). Plant Cell Rep 20:157–162. doi:10.1007/s002990000287

    Article  CAS  Google Scholar 

  • Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBSLRR family of disease-resistance genes. Plant J 20:265–277. doi:10.1046/j.1365-313X.1999.00600.x

    Article  CAS  PubMed  Google Scholar 

  • Ger MJ, Chen CH, Hwang SY, Huang HE, Podile AR, Dayakar BV, Feng TY (2002) Constitutive expression of Hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response. MPMI 15:764–773. doi:10.1094/MPMI.2002.15.8.764

    Article  CAS  PubMed  Google Scholar 

  • Hibberd AM, Bassett MJ, Stall RE (1987) Allelism tests of three dominant genes for hypersensitive resistance to bacterial spot of pepper. Phytopathology 77:1304–1307. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1987Articles/Phyto77n09_1304.PDF

    Article  Google Scholar 

  • Huang Y, Nordeen RO, Di M, Owens LD, McBeth JH (1997) Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Phytopathology 87:494–499. doi:10.1094/PHYTO.1997.87.5.494

    Article  CAS  PubMed  Google Scholar 

  • Huang SN, Chen CH, Lin HJ, Ger MJ, Chen ZI, Feng TY (2004) Plant ferredoxin-like protein AP1 enhances Erwinia induced hypersensitive response of tobacco. Physiol Mol Plant Pathol 64:103–110. doi:10.1016/j.pmpp.2004.05.005

    Article  CAS  Google Scholar 

  • Huang HE, Ger MJ, Chen CY, Pandey AK, Yip MK, Chou HW, Feng TY (2007) Disease resistance to bacterial pathogens affected by the amount of ferredoxin-I protein in plants. Mol Plant Pathol 8:129–137. doi:10.1111/j.1364-3703.2006.00378.x

    Article  CAS  PubMed  Google Scholar 

  • Hultmark D, Engström Å, Andersson K, Steiner H, Bennich H, Boman HG (1983) Insect immunity: Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2:571–576. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555063/pdf/emboj00257-0090.pdf, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC555063/pdf/emboj00257-0090.pdf

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaduno-Okuda K, Taniai K, Kato Y, Kotani E, Yamakaula M (1995) Effects of synthetic Bombyx mori cecropin B on growth of plant pathogenic bacteria. J Invertebr Pathol 65:309–319. doi:10.1006/jipa.1995.1047

    Article  Google Scholar 

  • Kagezi GH, Kangire A, Tushemereirwe W, Bagamba F, Kikulwe E, Muhangi J, Gold CS, Ragama P (2006) Field assessment of banana bacterial wilt incidence in Uganda. Afr Crop Sci J 14:83–91. doi:10.4314/acsj.v14i2.27914

    Google Scholar 

  • Kawata M, Nakajima T, Yamamoto T, Mori K, Oikawa T, Fukumoto F, Kuroda S (2003) Genetic engineering for disease resistance in rice (Oryza sativa L.) using antimicrobial peptides. Jpn Agric Res Q 37:71–76. https://www.jircas.affrc.go.jp/english/publication/jarq/37-2/37-02-01.pdf

    Article  CAS  Google Scholar 

  • Keen NT (1999) Plant disease resistance: progress in basic understanding and practical application. Adv Bot Res 30:292–328. doi:10.1016/S0065-2296(08)60230-X

    Google Scholar 

  • Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier JL, Roby D, Ricei P (1999) Pathogen induced elicitin production in transgenic tobacco generates a hypersensitive response and non-specific disease resistance. Plant Cell 11:223–235. doi:10.1105/tpc.11.2.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens mediated transformation (CAA) of embryogenic cell suspensions of banana (Musa spp.) Cavendish AAA and Lady Finger AAB. Mol Breed 14:239–252. doi:10.1023/B:MOLB.0000047771.34186.e8

    Article  CAS  Google Scholar 

  • Kim YJ, Lin NC, Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589–598. doi:10.1016/S0092-8674(02)00743-2

    Article  CAS  PubMed  Google Scholar 

  • Ko K (1999) Attacin and T4 lysozyme transgenic ‘Galaxy’ apple: regulation of transgene expression and plant resistance to fire blight (Erwinia amylovora). Ph.D dissertation, Cornell University, New York

    Google Scholar 

  • Ko K, Norelli JL, Reynoird JP, Boresjza-Wysocka E, Brown SK, Aldwinckle HS (2000) Effect of untranslated leader sequence of AMV RNA 4 and signal peptide of pathogenesis-related protein 1b on attacin gene expression, and resistance to fire blight in transgenic apple. Biotechnol Lett 22:373–381. doi:10.1023/A:1005672601625

    Google Scholar 

  • Kubiriba J, Tushemereirwe WK (2014) Approaches for the control of banana Xanthomonas wilt in East and Central Africa. Afr J Plant Sci 8(8):398–404. doi:10.5897/AJPS2013.1106

    Article  Google Scholar 

  • Kubiriba J, Karamura EB, Jogo W, Tushemereirwe WK, Tinzaara W (2012) Community mobilization: a key to effective control of banana Xanthomonas wilt. J Dev Agric Econ 45(5):125–131. doi:10.5897/JDAE11.098

    Google Scholar 

  • Li Q, Lawrence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analogue in transgenic tobacco. Planta 212:635–639. doi:10.1007/s004250000480

    Article  CAS  PubMed  Google Scholar 

  • Liau CH, Lu JC, Prasad V, Lee JT, Hsiao HH, You SJ, Yang NS, Huang HE, Feng TY, Chen WH, Chan MT (2003) The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid. Transgenic Res 12:329–336. doi:10.1023/A:1023343620729

    Article  CAS  PubMed  Google Scholar 

  • Lin HJ, Cheng HY, Chen CH, Huang HC, Feng TY (1997) Plant amphipathic proteins delay the hypersensitive response caused by harpinPss and Pseudomonas syringae pv. syringae. Physiol Mol Plant Pathol 51:367–376. doi:10.1006/pmpp.1997.0121

    Article  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436. doi:10.1126/science.7902614

    Article  CAS  PubMed  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472. doi:10.1104/pp.105.2.467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mentag R, Lukevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411. doi:10.1093/treephys/23.6.405

    Article  CAS  PubMed  Google Scholar 

  • Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Stasawicz BJ, Stall R (1990) Gene for gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria-pepper interactions. MPMI 3:41–47. doi:10.1094/MPMI-3-041

    Article  CAS  Google Scholar 

  • Molina A, Ahl Goy P, Fraile A, Sanchez-Monge R, Garcia-Olmedo F (1993) Inhibition of bacterial and fungal pathogens by thionins of types I and II. Plant Sci 92:169–177. doi:10.1046/j.1365-313X.1997.00669.x

    Article  CAS  Google Scholar 

  • Muhangi J, Nankinga C, Tushemereirwe WK, Rutherfold M, Ragama P, Nowakunda K, Abeyasekera S (2006) Impact of awareness campaigns for banana bacterial wilt in Uganda. Afr Crop Sci J 14(2):175–183. doi:10.4314/acsj.v14i2.27925

    Google Scholar 

  • Mwebaze JM, Tusiime G, Tushmereirwe WK, Kubiriba J (2006) The survival of Xanthomonas campestris pv. musacearum in soil and plant debris. Afr Crop Sci J 14:121–127. doi:10.4314/acsj.v14i2.46166

    Google Scholar 

  • Mysore KS, D’Ascenzo MD, He X, Martin GB (2003) Overexpression of the disease resistance gene Pto in tomato induces gene expression changes similar to immune responses in human and fruitfly. Plant Physiol 132:1901–1912. doi:10.1104/pp.103.022731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, Tushemereirwe WK (2012) Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Res 4:855–865. doi:10.1007/s11248-011-9574-y

    Article  Google Scholar 

  • Ndungo V, Eden-Green S, Blomme G, Crozier J, Smith J (2006) Presence of banana Xanthomonas wilt (Xanthomonas campestris pv. musacearum) in the Democratic Republic of Congo (DRC). Plant Pathol 55:294. doi:10.1111/j.1365-3059.2005.01258.x

    Article  Google Scholar 

  • Nordeen RO, Sinden SL, Jaynes JM, Owens LD (1992) Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci 82:101–107. doi:10.1016/0168-9452(92)90012-B

    Article  CAS  Google Scholar 

  • Norelli JL, Mills JZ, Momol MT, Aldwinkle HS (1998) Effect of cercropin-type transgenes on fire blight resistance of apple. Acta Hortic 489:273–278. doi:10.17660/ActaHortic.1999.489.47

    Google Scholar 

  • Norelli JL, Borejsza-Wysocka E, Momol MT, Mills JZ, Grethel A, Alkwinckle HS, Ko K, Brown SK, Bauer DW, Beer SV, Abdul-Kader AM, Hanke V (1999) Genetic transformation for fire blight resistance in apple. Acta Hortic 489:295–296. doi:10.17660/ActaHortic.1999.489.50

    Google Scholar 

  • Pandey AK, Ger MJ, Huang HE, Yip MK, Zeng J, Feng TY (2005) Expression of the hypersensitive response-assisting protein in Arabidopsis results in harpin-dependent hypersensitive cell death in response to Erwinia carotovora. Plant Mol Biol 59:771–780. doi:10.1007/s11103-005-1002-3

    Article  CAS  PubMed  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defence responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stress in transgenic rice. MPMI 21:1215–1231. doi:10.1094/MPMI-21-9-1215

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran K, Stromberg KD, Cary JW, Cleveland TE (2001) Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agric Food Chem 49:2799–2803. doi:10.1021/jf010154d

    Article  CAS  PubMed  Google Scholar 

  • Reeder R, Opolot O, Muhinyuza J, Aritua A, Crozier J, Smith J (2007) Presence of banana bacterial wilt (Xanthomonas campestris pv. musacearum) in Rwanda. New Dis Rep 14:52. doi:10.1111/j.1365-3059.2007.01640.x

    Google Scholar 

  • Reynoird JP, Mourgues F, Norelli JL, Aldwinckle HS, Brisset MN, Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Sci 149:23–31. doi:10.1016/S0168-9452(99)00139-9

    Article  CAS  Google Scholar 

  • Rommens CM, Kishore GM (2000) Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11:120–125. doi:10.1016/S0958-1669(00)00083-5

    Article  CAS  PubMed  Google Scholar 

  • Ronald PC, Albano B, Tabien R, Abenes L, Wu K, McCouch S, Tanksley SD (1992) Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol Gen Genet 236:113–120. doi:10.1007/BF00279649

    CAS  PubMed  Google Scholar 

  • Sagi L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Cammue B (1995) Genetic transformation of banana (Musa spp.) via particle bombardment. Bio Technol 13:481–485. doi:10.1038/nbt0595-481

    Google Scholar 

  • Sekiwoko F, Taligoola HK, Tushemereirwe WK (2006) Xanthomonas campestris pv musacearum host range in Uganda. Afr Crop Sci J 14:111–120. doi:10.4314/acsj.v14i2.46165

    Google Scholar 

  • Sequeira L (1998) The missing element in international banana improvement programs. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspect. Springer, Berlin

    Google Scholar 

  • Sherwood SG (1997) Little things mean a lot: working with central American farmers to address the mystery of plant diseases. Agric Hum Values 14:181–189. doi:10.1023/A:1007383508503

    Article  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Holsten T, Wang B, Zhai WX, Zhu LH, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806. doi:10.1111/j.1467-7652.2007.00243.x

    Article  CAS  PubMed  Google Scholar 

  • Swanson J, Kearney B, Dahlbeck D, Staskawicz BJ (1988) Cloned avirulence gene of Xanthomonas campestris pv. vesicatoria complements spontaneous race change mutant. MPMI 1:5–9. doi:10.1094/MPMI-1-005

    Article  Google Scholar 

  • Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci U S A 23:14153–14158. doi:10.1073/pnas.96.24.14153

    Article  Google Scholar 

  • Tang K, Sun X, Hu Q, Wu A, Lin CH, Lin HJ, Twyman RM, Christou P, Feng TY (2001) Transgenic rice plants expressing the ferredoxin-like protein (AP1) from sweet pepper show enhanced resistance to Xanthomonas oryzae pv. oryzae. Plant Sci 160:1035–1042. doi:10.1016/S0168-9452(01)00351-X

    Article  CAS  PubMed  Google Scholar 

  • Thwaites R, Eden-Green S, Black R (2000) Diseases caused by bacteria. In: Jones DR (ed) Diseases of banana, abaca and enset. CABI Publishing, Wallingford

    Google Scholar 

  • Tinzaara W, Gold CS, Ssekiwoko F, Tushemereirwe W, Bandyopadhyay R, Abera A, Eden-Green S (2006) The possible role of insects in the transmission of banana Xanthomonas wilt. Afr Crop Sci J 14:105–110. doi:10.4314/acsj.v14i2.27916

    Google Scholar 

  • Tripathi L, Tripathi JN, Tushemereirwe WK, Bandyopadhyay R (2007) Development of a semi-selective medium for isolation of Xanthomonas campestris pv. musacearum from banana plants. Eur J Plant Pathol 117:177–186. doi:10.1007/s10658-006-9083-7

    Article  Google Scholar 

  • Tripathi L, Odipio J, Tripathi JN, Tusiime G (2008) A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. Eur J Plant Pathol 121:9–19. doi:10.1007/s10658-007-9235-4

    Article  Google Scholar 

  • Tripathi L, Mwangi M, Abele S, Aritua V, Tushemereirwe WK, Bandyopadhyay R (2009) A threat to banana production in east and central Africa. Plant Dis 93:440–451. doi:10.1094/PDIS-93-5-0440

    Article  Google Scholar 

  • Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK (2010) Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Mol Plant Pathol 11:721–731. doi:10.1111/J.1364-3703.2010.00639.X

    CAS  PubMed  Google Scholar 

  • Tripathi J, Muwonge A, Tripathi L (2012) Highly efficient regeneration and transformation protocol for plantain cv. ‘Gonja Manjaya’ (Musa spp. AAB) using embryogenic cell suspension. In Vitro Cell Dev Biol Anim 48:216–224. doi:10.1007/s11627-011-9422-z

    Article  Google Scholar 

  • Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L (2014a) Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotech J 12:663–673. doi:10.1111/pbi.12170

    Article  CAS  Google Scholar 

  • Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, Tushemereirwe WK (2014b) Field trial of Xanthomonas wilt disease-resistant bananas in East Africa. Nat Biotechnol 32(9):868–870. doi:10.1038/nbt.3007

    Article  CAS  PubMed  Google Scholar 

  • Tripathi JN, Oduor RO, Tripathi L (2015) A high-throughput regeneration and transformation platform for production of genetically modified banana. Front Plant Sci 6:1025. doi:10.3389/fpls.2015.01025

    PubMed  PubMed Central  Google Scholar 

  • Trudel J, Potvin C, Asselin A (1995) Secreted hen lysozyme in transgenic tobacco: recovery of bound enzyme and in vitro growth inhibition of plant pathogens. Plant Sci 106:55–62. doi:10.1016/0168-9452(95)04069-7

    Article  CAS  Google Scholar 

  • Tushemereirwe WK, Kangire A, Ssekiwoko F (2004) First report of Xanthomonas campestris pv. musacearum on banana in Uganda. Plant Pathol 53:802. doi:10.1111/j.1365-3059.2004.01090.x

    Article  Google Scholar 

  • Tushemereirwe WK, Okaasai O, Kubiriba J, Nankinga C, Muhangi J, Odoi N, Opio F (2006) Status of banana bacterial wilt in Uganda. Afr Crop Sci J 14(2):73–82. doi:10.4314/acsj.v14i2.27913

    Google Scholar 

  • Wang GL, Song WY, Ruan DL, Sideris S, Ronald PC (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. Oryzae isolates in transgenic plants. MPMI 9:850–855. doi:10.1094/MPMI-9-0850

    Article  CAS  PubMed  Google Scholar 

  • Wasukira A, Tayebwa J, Thwaites R, Paszkiewicz K, Aritua V, Kubiriba J, Smith J, Grant M, Studholme DJ (2012) Genome-wide sequencing reveals two major sub-lineages in the genetically monomorphic pathogen Xanthomonas campestris pathovar musacearum. Genes 3:361–377. doi:10.3390/genes3030361

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Chen Z (2000) Harpin-induced hypersensitive cell death is associated with altered mitochondrial functions in tobacco cells. MPMI 13:183–190. doi:10.1094/MPMI.2000.13.2.183

    Article  CAS  PubMed  Google Scholar 

  • Yip MK, Huang HE, Ger MJ, Chiu SH, Tsai YC, Lin CI, Feng TY (2007) Production of soft rot resistant calla lily by expressing a ferredoxin-like protein gene (pflp) in transgenic plants. Plant Cell Rep 26:449–457. doi:10.1007/s00299-006-0246-y

    Article  CAS  PubMed  Google Scholar 

  • Yirgou D, Bradbury JF (1968) Bacterial wilt of enset (Ensete ventricosum) incited by Xanthomonas musacearum sp. nov. Phytopathology 58:111–112

    Google Scholar 

  • Yirgou D, Bradbury JF (1974) A note on wilt of banana caused by the enset wilt organism Xanthomonas musacearum. East Afr Agric For J 40:111–114

    Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A 95:1663–1668. http://www.pnas.org/content/95/4/1663.full.pdf?sid=7aec7fc7-83c9-474c-8c99-d8920f7a97e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Bradbury JF, Davis RE, Dickey RS, Ercolani GL, Haywood AC, Vidaver AK (1991) Nomenclature revisions of plant pathogenic bacteria and list of names 1980–1988. Rev Plant Pathol 70:211–221. http://www.cabdirect.org/

    Google Scholar 

  • Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324. doi:10.1111/j.1467-7652.2007.00243.x

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453. doi:pnas00330-0371

    Google Scholar 

  • Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbet S (2005) A maize resistance gene functions against bacterial streak disease in rice. Proc Natl Acad Sci U S A 43:15383–15388. doi:10.1073/pnas.0503023102

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank US Agency for International Development (USAID) for financial support of BXW research. We acknowledge Academia Sinica, Taiwan, and the University of California, Davis, for providing gene constructs. We also acknowledge African Agricultural Technology Foundation (AATF) for negotiating license of Pflp and Hrap genes from Academia Sinica and for sublicensing the genes to International Institute of Tropical Agriculture (IITA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Tripathi, L., Tripathi, J.N., Kubiriba, J. (2016). Transgenic Technologies for Bacterial Wilt Resistance. In: Mohandas, S., Ravishankar, K. (eds) Banana: Genomics and Transgenic Approaches for Genetic Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1585-4_13

Download citation

Publish with us

Policies and ethics