Random Cellular Networks and Stochastic Geometry

  • Hui-Ming WangEmail author
  • Tong-Xing Zheng
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


In this chapter, we discuss the physical layer security in stochastic geometric networks. We first present the randomness of cellular networks deployment, and summarize the challenges to solve the physical layer security issue. We then introduce some primary knowledge of stochastic geometry theory, especially some useful properties of Poisson point process, which will be extensively used in the following chapters. It is concluded that various random wireless networks can be modeled and analyzed using the framework of stochastic geometry. Moreover, we introduce the network security performance metrics to evaluate the physical layer security. Finally, we provide a brief survey of recent researches on physical layer security in wireless networks, and introduce three open problems in this field which we are going to deal with in the following chapters.


Cellular Network Outage Probability Secrecy Rate Stochastic Geometry Femtocell Access Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.D. Wyner, Shannon-theoretic approach to a Gaussian cellular multiple-access channel. IEEE Trans. Inf. Theory 40(11), 1713–1727 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Shamai, A.D. Wyner, Information-theoretic considerations for symmetric, cellular, multiple-access fading channels-parts I & II. IEEE Trans. Inf. Theory 43(11), 1877–1911 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    T.S. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice-Hall, Upper Saddle River, 2002)zbMATHGoogle Scholar
  4. 4.
    A.J. Goldsmith, Wireless Communications (Cambridge Univ. Press, Cambridge, 2005)CrossRefGoogle Scholar
  5. 5.
    M. Haenggi, J. Andrews, F. Baccelli, O. Dousse, M. Franceschetti, Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27(7), 1029–1046 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Stoyan, W. Kendall, J. Mecke, Stochastic Geometry and Its Applications, 2nd edn. (Wiley, New York, 1996)zbMATHGoogle Scholar
  7. 7.
    M. Haenggi, Stochastic Geometry for Wireless Networks (Cambridge University Press, Cambridge, 2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    H. ElSawy, E. Hossain, M. Haenggi, Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tutor. 15(3), 996–1019 (2013)CrossRefGoogle Scholar
  9. 9.
    F. Baccelli, B. Blaszczyszyn, Stochastic Geometry and Wireless Networks in Foundations and Trends in Networking, vol. 1 (Now Publishers, Breda, 2009)zbMATHGoogle Scholar
  10. 10.
    S. Cheng, S. Lien, F. Hu, K. Chen, On exploiting cognitive radio to mitigate interference in macro/femto heterogeneous networks. IEEE Wirel. Commun. 18(3), 40–47 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Ghasemi, E. Sousa, Interference aggregation in spectrum sensing cognitive wireless networks. IEEE J. Sel. Topics Signal Process. 2(1), 41–56 (2008)CrossRefGoogle Scholar
  12. 12.
    C.-H. Lee, M. Haenggi, Interference and outage in Poisson cognitive networks. IEEE Trans. Wirel. Commun. 11(4), 1392–1401 (2012)CrossRefGoogle Scholar
  13. 13.
    A. Rabbachin, T.Q.S. Quek, H. Shin, M.Z. Win, Cognitive network interference. IEEE J. Sel. Areas Commun. 29(2), 480–493 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Guo, M. Haenggi, Spatial stochastic models and metrics for the structure of base stations in cellular networks. IEEE Trans. Wirel. Commun. 12(11), 5800–5812 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Haenggi, Mean interference in hard-core wireless networks. IEEE Commun. Lett. 15(8), 792–794 (2011)CrossRefGoogle Scholar
  16. 16.
    J.G. Andrews, F. Baccelli, R.K. Ganti, A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)CrossRefGoogle Scholar
  17. 17.
    B. Blaszczyszyn, M.K. Karray, H.-P. Keeler, Using Poisson processes to model lattice cellular networks, in Proceedings of 32th Annual IEEE International Conference on Computer Communications (INFOCOM’13), Turin, Italy (2013), pp. 14-19Google Scholar
  18. 18.
    J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  19. 19.
    V. Chandrasekhar, J.G. Andrews, A. Gatherer, Femtocell networks: a survey. IEEE Commun. Mag. 46(9), 59–67 (2008)CrossRefGoogle Scholar
  20. 20.
    V. Chandrasekhar, J. Andrews, Spectrum allocation in tiered cellular networks. IEEE Trans. Commun. 57(10), 3059–3068 (2009)CrossRefGoogle Scholar
  21. 21.
    W. Cheung, T. Quek, M. Kountouris, Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks. IEEE J. Sel. Areas Commun. 30(3), 561–574 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Chandrasekhar, J. Andrews, Uplink capacity and interference avoidance for two-tier femtocell networks. IEEE Trans. Wirel. Commun. 8(7), 3498–3509 (2009)CrossRefGoogle Scholar
  23. 23.
    H.-S. Jo, Y.J. Sang, P. Xia, J.G. Andrews, Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun. 11(10), 3484–3495 (2012)CrossRefGoogle Scholar
  24. 24.
    H.S. Dhillon, R.K. Ganti, F. Baccelli, J.G. Andrews, Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30(3), 550–560 (2012)CrossRefGoogle Scholar
  25. 25.
    G. de la Roche, A. Valcarce, D. López-Pérez, J. Zhang, Access control mechanisms for femtocells. IEEE Commun. Mag. 48(1), 33–39 (2010)CrossRefGoogle Scholar
  26. 26.
    P. Xia, V. Chandrasekhar, J.G. Andrews, Open vs. closed access femtocells in the uplink. IEEE Trans. Wirel. Commun. 9(12), 3798–3809 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Singh, H.S. Dhillon, J.G. Andrews, Offloading in heterogeneous networks: modeling, analysis, and design insights. IEEE Trans. Wirel. Commun. 12(5), 2484–2497 (2013)CrossRefGoogle Scholar
  28. 28.
    H.S. Dhillon, R.K. Ganti, J.G. Andrews, load-aware modeling and analysis of heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 12(4), 1666–1677 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Mukherjee, Distribution of downlink SINR in heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 30(3), 575–585 (2012)CrossRefGoogle Scholar
  30. 30.
    M.D. Renzo, A. Guidotti, G.E. Corazza, Average rate of downlink heterogeneous cellular networks over generalized fading channels: A stochastic geometry approach. IEEE Trans. Commun. 61(7), 3050–3071 (2013)CrossRefGoogle Scholar
  31. 31.
    H.S. Dhillon, J.G. Andrews, Downlink rate distribution in heterogeneous cellular networks under generalized cell selection. IEEE Wirel. Commun. Lett. 3(1), 42–45 (2014)CrossRefGoogle Scholar
  32. 32.
    S. Parkvall, A. Furuskar, E. Dahlman, Evolution of LTE toward IMT-advanced. IEEE Commun. Mag. 49(2), 84–91 (2011)CrossRefGoogle Scholar
  33. 33.
    R.W. Heath, M. Kountouris, T. Bai, Modeling heterogeneous network interference using Poisson Point Processes. IEEE Trans. Signal Process. 61(16), 4114–4126 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    H.S. Dhillon, M. Kountouris, J.G. Andrews, Downlink MIMO HetNets: modeling, ordering results and performance analysis. IEEE Trans. Wirel. Commun. 12(10), 5208–5222 (2013)CrossRefGoogle Scholar
  35. 35.
    A.K. Gupta, H.S. Dhillon, S. Vishwanath, J.G. Andrews, Downlink multi-antenna heterogeneous cellular network with load balancing. IEEE Trans. Commun. 62(11), 4052–4067 (2014)CrossRefGoogle Scholar
  36. 36.
    A. Adhikary, H.S. Dhillon, G. Caire, Massive-MIMO meets HetNet: interference coordination through spatial blanking. IEEE J. Sel. Areas Commun. 33(6), 1171–1186 (2015)CrossRefGoogle Scholar
  37. 37.
    C. Li, J. Zhang, J.G. Andrews, K.B. Letaief, Success probability and area spectral efficiency in multiuser MIMO HetNets. IEEE Trans. Commun. 64(4), 1544–1556 (2016)CrossRefGoogle Scholar
  38. 38.
    E.S. Sousa, Optimum transmission range in a direct-sequence spread spectrum multihop packet radio network. IEEE J. Sel. Areas Commun. 8(5), 762–771 (1990)CrossRefGoogle Scholar
  39. 39.
    R. Mathar, J. Mattfeldt, On the distribution of cumulated interference power in Rayleigh fading channels. Wirel. Netw. 1(1), 31–36 (1995)CrossRefGoogle Scholar
  40. 40.
    M. Souryal, B. Vojcic, R. Pickholtz, Ad hoc, multihop CDMA networks with route diversity in a Rayleigh fading channel, in Proceedings of IEEE Military Communication Conference (MILCOM’01) (2001), pp. 1003–1007Google Scholar
  41. 41.
    S. Weber, J.G. Andrews, N. Jindal, An overview of the transmission capacity of wireless networks. IEEE Trans. Commun. 58(12), 3593–3604 (2010)CrossRefGoogle Scholar
  42. 42.
    O. Lévêque, I.E. Teletar, Information-theoretic upper bounds on the capacity of large extended ad hoc wireless networks. IEEE Trans. Inf. Theory, 858–865 (2005)Google Scholar
  43. 43.
    M. Franceschetti, A note on Lévêque and Telatar’s upper bound on the capacity of wireless ad hoc networks. IEEE Trans. Inf. Theory 53(9), 3207–3211 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    A. Özgür, O. Lévêque, D. Tse, Hierarchical cooperation achieves optimal capacity scaling in ad hoc networks. IEEE Trans. Inf. Theory 53(10), 3549–3572 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    S. Weber, X. Yang, J.G. Andrews, G. de Veciana, Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans. Inf. Theory 51(12), 4091–4102 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    K. Huang, V.K.N. Lau, Y. Chen, Spectrum sharing between cellular and mobile ad hoc networks: transmission-capacity trade-off. IEEE J. Sel. Areas Commun. 27(7), 1256–1267 (2009)CrossRefGoogle Scholar
  47. 47.
    V. Mordachev, S. Loyka, On node density-outage probability tradeoff in wireless networks. IEEE J. Sel. Areas Commun. 27(7), 1120–1131 (2009)CrossRefGoogle Scholar
  48. 48.
    Y. Liang, H.V. Poor, L. Ying, Secrecy throughput of MANETs with malicious nodes, in Proceedings of IEEE ISIT Seoul, Korea (2009), pp. 1189–1193Google Scholar
  49. 49.
    Y. Liang, G. Kramer, H.V. Poor, S. Shamai, Compound wiretap channels. EURASIP J. Wirel. Commun. Netw. (2009)Google Scholar
  50. 50.
    T.-X. Zheng, H.-M. Wang, Q. Yin, On transmission secrecy outage of a multi-antenna system with randomly located eavesdroppers. IEEE Commun. Lett. 18(8), 1299–1302 (2014)CrossRefGoogle Scholar
  51. 51.
    H. Wang, X. Zhou, M.C. Reed, Physical layer security in cellular networks: a stochastic geometry approach. IEEE Trans. Wirel. Commun. 12(6), 2776–2787 (2013)CrossRefGoogle Scholar
  52. 52.
    H.-M. Wang, T.-X. Zheng, J. Yuan, D. Towsley, M.H. Lee, Physical layer security in heterogeneous cellular networks. IEEE Trans. Commun. 64(3), 1204–1219 (2016)CrossRefGoogle Scholar
  53. 53.
    X. Zhou, R. Ganti, J. Andrews, A. Hjørungnes, On the throughput cost of physical layer security in decentralized wireless networks. IEEE Trans. Wirel. Commun. 10(8), 2764–2775 (2011)CrossRefGoogle Scholar
  54. 54.
    X. Zhang, X. Zhou, M.R. McKay, Enhancing secrecy with multi-antenna transmission in wireless ad hoc networks. IEEE Trans. Inf. Forensics Secur. 8(11), 1802–1814 (2013)CrossRefGoogle Scholar
  55. 55.
    Y. Deng, L. Wang, S.A.R. Zaidi, J. Yuan, M. Elkashlan, Artificial-noise aided secure transmission in large scale spectrum sharing networks. IEEE Trans. Commun. 64(5), 2116–2129 (2016)CrossRefGoogle Scholar
  56. 56.
    X.M. Xu, B. He, W.W. Yang, X. Zhou, Secure transmission design for cognitive radio networks with Poisson distributed eavesdroppers. IEEE Trans. Inf. Forensics Secur. 11(2), 373–387 (2016)CrossRefGoogle Scholar
  57. 57.
    C. Cai, Y. Cai, X. Zhou, W. Yang, W. Yang, When does relay transmission give a more secure connection in wireless ad hoc networks? IEEE Trans. Inf. Forensics Secur. 9(4), 624–632 (2014)CrossRefGoogle Scholar
  58. 58.
    M. Haenggi, The secrecy graph and some of its properties, in Proceedings of IEEE ISIT, Toronto, Canada, (2008), pp. 539–543Google Scholar
  59. 59.
    P.C. Pinto, M.Z. Win, Percolation and connectivity in the intrinsically secure communications graph. IEEE Trans. Inf. Theory 58(3), 1716–1730 (2010)MathSciNetCrossRefGoogle Scholar
  60. 60.
    S. Goel, V. Aggarwal, A. Yener, A.R. Calderbank, Modeling location uncertainty for eavesdroppers: a secrecy graph approach, in Proceedings of IEEE ISIT, Austin, USA (2010), pp. 2627–2631Google Scholar
  61. 61.
    P.C. Pinto, J. Barros, M.Z. Win, Secure communication in stochastic wireless networks Part I: Connectivity. IEEE Trans. Inf. Forensics Secur. 7(1), 125–138 (2012)CrossRefGoogle Scholar
  62. 62.
    O.O. Koyluoglu, C.E. Koksal, H.E. Gamal, On secrecy capacity scaling in wireless networks. IEEE Trans. Inf. Theory 58(5), 3000–3015 (2012)MathSciNetCrossRefGoogle Scholar
  63. 63.
    C. Capar, D. Goeckel, B. Liu, D. Towsley, Secret communication in large wireless networks without eavesdropper location information, in Proceedings of IEEE INFOCOM, Orlando, USA (2012), pp. 1152–1160Google Scholar
  64. 64.
    G. Geraci, R. Couillet, J. Yuan, M. Debbah, I.B. Collings, Large system analysis of linear precoding in MISO broadcast channels with confidential messages. IEEE J. Sel. Areas Commun. 31(9), 1660–1671 (2013)CrossRefGoogle Scholar
  65. 65.
    G. Geraci, S. Singh, J.G. Andrews, J. Yuan, I.B. Collings, Secrecy rates in broadcast channels with confidential messages and external eavesdroppers. IEEE Trans. Wirel. Commun. 13(5), 2931–2943 (2014)CrossRefGoogle Scholar
  66. 66.
    G. Geraci, H.S. Dhillon, J.G. Andrews, J. Yuan, I.B. Collings, Physical layer security in downlink multi-antenna cellular networks. IEEE Trans. Commun. 62(6), 2006–2021 (2014)CrossRefGoogle Scholar
  67. 67.
    J. Yao, S. Feng, X. Zhou, Y. Liu, Secure routing in multihop wireless ad-hoc networks with decode-and-forward relaying. IEEE Trans. Commun. 64(2), 753–764 (2016)CrossRefGoogle Scholar
  68. 68.
    J. Lee, A. Conti, A. Rabbachin, M.Z. Win, Distributed network secrecy. IEEE J. Sel. Areas Commun. 31(9), 1889–1900 (2013)CrossRefGoogle Scholar
  69. 69.
    D. Wu, J. Wang, R.Q. Hu, Y. Cai, Energy-efficient resource sharing for mobile device-to-device multimedia communications. IEEE Trans. Veh. Technol. 63(5), 2093–2103 (2014)CrossRefGoogle Scholar
  70. 70.
    A. Mukherjee, Physical-layer security in the Internet of Things: sensing and communication confidentiality under resource constraints. Proc. IEEE 103(10), 1747–1761 (2015)CrossRefGoogle Scholar
  71. 71.
    M. Ghogho, A. Swami, Physical-layer secrecy of MIMO communications in the presence of a Poisson random field of eavesdroppers, in Proceedings of IEEE ICC Workshops (2011), pp. 1–5Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Information and Communications EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations