Wireless Physical Layer Security

  • Hui-Ming WangEmail author
  • Tong-Xing Zheng
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


In this chapter, the context and the fundamental concepts of physical layer security are well introduced. It starts at Shannon’s definition of information-theoretic security, Wyner’s wiretap model, and secrecy conditions. Then the secrecy metrics are described, including secrecy capacity/rate, ergodic secrecy capacity/rate, secrecy outage, and secrecy throughput. At the end of this chapter, we provide a brief survey on the recent research advances on wireless physical layer security.


Channel State Information Secrecy Rate Secrecy Capacity Cooperative Node Wiretap Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.E. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A.D. Wyner, The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    I. Csiszár, J. Körner, Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24(3), 339–348 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S.L.Y. Cheong, M. Hellman, The Gaussian wire-tap channel. IEEE Trans. Inf. Theory 24(4), 451–456 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Gopala, L. Lai, H. El Gamal, On the secrecy capacity of fading channels. IEEE Trans. Inf. Theory 54(10), 4687–4698 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Barros, M.R.D. Rodrigues, Secrecy capacity of wireless channels, in Proceedings of IEEE International Symposium on Information Theory, Seattle, WA (2006)Google Scholar
  7. 7.
    M. Bloch, J. Barros, M.R.D. Rodrigues, S. McLaughlin, Wireless information-theoretic security. IEEE Trans. Inf. Theory 54(6), 2515–2534 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    X. Zhou, M.R. McKay, B. Maham, A. Hjørungnes, Rethinking the secrecy outage formulation: a secure transmission design perspective. IEEE Commun. Lett. 15(3), 302–304 (2011)CrossRefGoogle Scholar
  9. 9.
    W.K. Harrison, J. Almeida, M.R. Bloch, S.W. McLaughlin, J. Barros, Coding for secrecy: an overview of error-control coding techniques for physical-layer security. IEEE Signal Process Mag. 30(5), 41–50 (2013)CrossRefGoogle Scholar
  10. 10.
    Y.-W.P. Hong, P.-C. Lan, C.-C.J. Kuo, Enhancing physical layer secrecy in multiantenna wireless systems: an overview of signal processing approaches. IEEE Signal Process. Mag. 30(5), 29–40 (2013)CrossRefGoogle Scholar
  11. 11.
    F. Oggier, B. Hassibi, The secrecy capacity of the MIMO wiretap channel, in Proceedings of IEEE International Symposium on Information Theory, Toronto, ON, Canada (2008), pp. 524–528Google Scholar
  12. 12.
    A. Khisti, G.W. Wornell, Secure transmission with multiple antennas—Part II: the MIMOME wiretap channel. IEEE Trans. Inf. Theory 56(11), 5515–5532 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S.A.A. Fakoorian, A.L. Swindlehurst, Optimal power allocation for GSVD-based beamforming in the MIMO Gaussian wiretap channel, in Proceedings of International Symposium on Information Theory, Cambridge, MA (2012)Google Scholar
  14. 14.
    S.A.A. Fakoorian, A.L. Swindlehurst, Full rank solutions for the MIMO Gaussian wiretap channel with an average power constraint. IEEE Trans. Signal Process. 61(10), 2620–2631 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Q. Li, M. Hong, H.-T. Wai, Y.-F. Liu, W.-K. Ma, Z.-Q. Luo, Transmit solutions for MIMO wiretap channels using alternting optimizaiton. IEEE. J. Sel. Area Commun. 31(9), 1714–1726 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Loyka, C.D. Charalambous, An algorithm for global maximization of secrecy rates in Gaussian MIMO wiretap channels. IEEE Trans. Commun. 63(6), 2288–2299 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Khisti, G. Wornell, Secure transmission with multiple antennas I: The MISOME wiretap channel. IEEE Trans. Inf. Theory 56(7), 3088–3104 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    S.-C. Lin, P.-H. Lin, On secrecy capacity of fast fading multiple input wiretap channels with statistical CSIT. IEEE Trans. Inf. Forensics Secur. 8(2), 414–419 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Li, A.P. Petropulu, On ergodic secrecy rate for Gaussian MISO wiretap channels. IEEE Trans. Wirel. Commun. 10(4), 1176–1187 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Li, A.P. Petropulu, Ergodic secrecy rate for multiple-antenna wiretap channels with Rician fading. IEEE Trans. Inf. Forensics Secur. 6(3), 861–867 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Gerbracht, C. Scheunert, E.A. Jorswieck, Secrecy outage in MISO systems with partial channel information. IEEE Trans. Inf. Forensics Secur. 7(2), 704–716 (2012)CrossRefGoogle Scholar
  22. 22.
    Q. Li, W.-K. Ma, A.M.-C. So, A safe approximation approach to secrecy outage design for MIMO wiretap channels. IEEE Signal Process. Lett. 21(1), 118–121 (2014)CrossRefGoogle Scholar
  23. 23.
    R. Negi, S. Goel, Secret communication using artificial noise, in Proceedings of IEEE Vehicular Technology Conference, Dallas vol 3 (2005), pp. 1906–1910Google Scholar
  24. 24.
    S. Goel, R. Negi, Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7(6), 2180–2189 (2008)CrossRefGoogle Scholar
  25. 25.
    X. Zhou, M.R. McKay, Secure transmission with artificial noise over fading channels: achievable rate and optimal power allocation. IEEE Trans. Veh. Technol. 59(8), 3831–3842 (2010)CrossRefGoogle Scholar
  26. 26.
    X. Zhang, X. Zhou, M.R. McKay, On the design of artificial-noise-aided secure multi-antenna transmission in slow fading channels. IEEE Trans. Veh. Technol. 62(5), 2170–2181 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Xiong, K.-K. Wong, D. Ma, J. Wei, A closed-form power allocation for minimizing secrecy outage probability for MISO wiretap channels via masked beamforming. IEEE Commum. Lett. 16(9), 1496–1499 (2012)CrossRefGoogle Scholar
  28. 28.
    H.-M. Wang, T. Zheng, X.-G. Xia, Secure MISO wiretap channels with multi-antenna passive eavesdropper: artificial noise vs. artificial fast fading. IEEE Trans. Wirel. Commun. 14(1), 94–106 (2015)CrossRefGoogle Scholar
  29. 29.
    S.-H. Tsai, H.V. Poor, Power allocation for artificial-noise secure MIMO precoding systems. IEEE Trans. Signal Process. 62(13), 3479–3493 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    H.-M. Wang, C. Wang, D.W.K. Ng, Artificial noise assisted secure transmission under training and feedback. IEEE Trans. Signal Process. 63(23), 6285–6298 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    H.-M. Wang, C. Wang, D.W.K. Ng, M.H. Lee, J. Xiao, Artificial noise assisted secure transmission for distributed antenna systems. IEEE Trans. Signal Process. 64(15), 4050–4064 (2016)Google Scholar
  32. 32.
    E. Tekin, A. Yener, The general Gaussian multiple access and two-way wire-tap channels: achievable rates and cooperative jamming. IEEE Trans. Inf. Theory 54(6), 2735–2751 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    L. Lai, H.E. Gamal, The relay-eavesdropper channel: cooperation for secrecy. IEEE Trans. Inf. Theory 54(9), 4005–4019 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    R. Bassily, E. Ekrem, X. He, E. Tekin, J. Xie, M.R. Bloch, S. Ulukus, A. Yener, Cooperative security at the physical layer: a summary of recent advances. IEEE Signal Process. Mag. 30(5), 16–28 (2013)CrossRefGoogle Scholar
  35. 35.
    H.-M. Wang, X.-G. Xia, Enhancing wireless secrecy via cooperation: signal design and optimization. IEEE Commun. Mag. 53(12), 47–53 (2015)CrossRefGoogle Scholar
  36. 36.
    H. Deng, H.-M. Wang, W. Guo, W. Wang, Secrecy transmission with a helper: to relay or to jam. IEEE Trans. Inf. Forensics Secur. 10(2), 293–307 (2015)CrossRefGoogle Scholar
  37. 37.
    L. Dong, Z. Han, A.P. Petropulu, H.V. Poor, Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    J. Li, A. Petropulu, S. Weber, On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process. 59(10), 4985–4997 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Z. Ding, K.K. Leung, D.L. Goeckel, D. Towsley, On the application of cooperative transmission to secrecy communications. IEEE J. Sel. Areas Commun. 30(2), 359–368 (2012)CrossRefGoogle Scholar
  40. 40.
    H.-M. Wang, Q. Yin, X.-G. Xia, Distributed beamforming for physical-layer security of two-way relay networks. IEEE Trans. Signal Process. 60(7), 3532–3545 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    T.-X. Zheng, H.-M. Wang, F. Liu, M.H. Lee, Outage constrained secrecy throughput maximization for DF relay networks. IEEE Trans. Commun. 63(5), 1741–1755 (2015)CrossRefGoogle Scholar
  42. 42.
    I. Krikidis, Opportunistic relay selection for cooperative networks with secrecy constraints. IET. Commun. 4(15), 1787–1791 (2010)CrossRefGoogle Scholar
  43. 43.
    Y. Zou, X. Wang, W. Shen, Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J. Sel. Areas Commun. 31(10), 2099–2111 (2013)CrossRefGoogle Scholar
  44. 44.
    V.N.Q. Bao, N.L. Trung, M. Debbah, Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Trans. Wireless Commun. 12(12), 6076–6085 (2013)CrossRefGoogle Scholar
  45. 45.
    G. Zheng, L.-C. Choo, K.-K. Wong, Optimal cooperative jamming to enhance physical layer security using relays. IEEE Trans. Signal Process. 59(3), 1317–1322 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Huang, A.L. Swindlehurst, Cooperative jamming for secure communications in MIMO relay networks. IEEE Trans. Signal Process. 59(10), 4871–4885 (2011)MathSciNetCrossRefGoogle Scholar
  47. 47.
    C. Wang, H.-M. Wang, Robust joint beamforming and jamming for secure AF networks: low complexity design. IEEE Trans. Veh. Technol. 64(5), 2192–2198 (2015)CrossRefGoogle Scholar
  48. 48.
    I. Krikidis, J. Thompson, S. Mclaughlin, Relay selection for secure cooperative networks with jamming. IEEE Trans. Wireless Commun. 8(10), 5003–5011 (2009)CrossRefGoogle Scholar
  49. 49.
    J.C. Chen, R.Q. Zhang, L.Y. Song, Z. Han, B.L. Jiao, Joint relay and jammer selection for secure two-way relay networks. IEEE Trans. Inf. Forensics Secur. 7(1), 310–320 (2012)CrossRefGoogle Scholar
  50. 50.
    H.-M. Wang, M. Luo, X.-G. Xia, Q. Yin, Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper’s ICSI. IEEE Signal Process. Lett. 20(1), 39–42 (2013)CrossRefGoogle Scholar
  51. 51.
    H.-M. Wang, M. Luo, Q. Yin, Hybrid cooperative beamforming and jamming for physical-layer security of two-way relay networks. IEEE Trans. Inf. Forensics Secur. 8(12), 2007–2020 (2013)CrossRefGoogle Scholar
  52. 52.
    C. Wang, H.-M. Wang, X.-G. Xia, Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks. IEEE Trans. Wireless Commun. 14(2), 589–605 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Duarte, C. Dick, A. Sabharwal, Experiment-driven characterization of full-duplex wireless systems. IEEE Trans. Wirel. Commun. 11(12), 4296–4307 (2012)CrossRefGoogle Scholar
  54. 54.
    D.W.K. Ng, E.S. Lo, R. Schober, Dynamic resource allocation in MIMO-OFDMA systems with full-duplex and hybrid relaying. IEEE Trans. Commun. 60(5), 1291–1304 (2012)CrossRefGoogle Scholar
  55. 55.
    T. Riihonen, S. Werner, R. Wichman, Mitigation of loopback selfinterference in full-duplex MIMO relays. IEEE Trans. Signal Process. 59(12), 5983–5993 (2011)MathSciNetCrossRefGoogle Scholar
  56. 56.
    A. Sabharwal et al., In-band full-duplex wireless: Challenges and opportunities. IEEE J. Sel. Areas Commun. 32(9), 1637–1652 (2014)CrossRefGoogle Scholar
  57. 57.
    W. Li, M. Ghogho, B. Chen, C. Xiong, Secure communication via sending artificial noise by the receiver: Outage secrecy capacity/region analysis. IEEE Commun. Lett. 16(10), 1628–1631 (2012)CrossRefGoogle Scholar
  58. 58.
    G. Zheng, I. Krikidis, J. Li, A. Petropulu, B. Ottersten, Improving physical tier secrecy using full-duplex jamming receivers. IEEE Trans. Signal Process. 61(20), 4962–4974 (2013)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Y. Zhou, Z. Xiang, Y. Zhu, Z. Xue, Application of full-duplex wireless technique into secure MIMO communication: achievable secrecy rate based optimization. IEEE Signal Process. Lett. 21(7), 804–808 (2014)CrossRefGoogle Scholar
  60. 60.
    Ö. Cepheli, S. Tedik, G.K. Kurt, A high data rate wireless communication system with improved secrecy: full duplex beamforming. IEEE Commun. Lett. 18(6), 1075–1078 (2014)CrossRefGoogle Scholar
  61. 61.
    G. Chen, Y. Gong, P. Xiao, J.A. Chambers, Physical layer network security in the full-duplex relay system. IEEE Trans. Inf. Forensics Secur. 10(3), 574–583 (2015)CrossRefGoogle Scholar
  62. 62.
    S. Parsaeefard, T. Le-Ngoc, Improving wireless secrecy rate via full-duplex relay-assisted protocols. IEEE Trans. Inf. Forensics Secur. 10(10), 2095–2107 (2015)CrossRefGoogle Scholar
  63. 63.
    F. Zhu, F. Gao, M. Yao, H. Zou, Joint information- and jamming-beamforming for physical layer security With full duplex base station. IEEE Trans. Signal Process. 62(24), 6391–6401 (2014)MathSciNetCrossRefGoogle Scholar
  64. 64.
    F. Zhu, F. Gao, T. Zhang, K. Sun, M. Yao, Physical-layer security for full duplex communications with self-interference mitigation. IEEE Trans. Wirel. Commun. 15(1), 329–340 (2016)CrossRefGoogle Scholar
  65. 65.
    A. Mukherjee, S. Fakoorian, J. Huang, A. Swindlehurst, Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun. Surv. Tutor. 16(3), 1550–1573 (2014)CrossRefGoogle Scholar
  66. 66.
    Y. Liang, H. Poor, S. Shamai, Information theoretic security. Found. Trends Commun. Inf. Theory 5(4–5), 355–580 (2009)zbMATHGoogle Scholar
  67. 67.
    M. Bloch, J. Barros, Physical Layer Security: From Information Theory to Security Engineering (Cambridge Univ. Press, New York, 2011)CrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Department of Information and Communications EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations