Skip to main content

Cage Boron Arylation of o-Carborane via Metal-Free, Visible-Light-Mediated Radical Coupling

  • Chapter
  • First Online:
  • 331 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter demonstrates that 3-diazonium-o-carborane tetrafluoroborate can serve as not only an efficient precursor for 1,3-dehydro-o-carborane, but also an ideal source of o-carboranyl boryl radical in the presence of visible light. For instance, the resulting o-carboranyl boryl radical can undergo regioselective C–H insertion reaction with simple arenes bearing a wide range of functional groups. This general and simple procedure provides a transition-metal-free alternative for the synthesis of cage boron-arylated o-carboranes, which may found application in materials science. This work also represents a synthetic useful application of boryl radicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (a) Jones W, Feher, F (1989) Comparative reactivities of hydrocarbon carbon-hydrogen bonds with a transition-metal complex. Acc Chem Res 22(3):91–100 (b) Labinger JA, Bercaw JE (2002) Understanding and exploiting C–H bond activation. Nature 417(6888):507–514 (c) Dyker G (2005) Handbook of C–H transformations: Applications in organic synthesis. Wiley-VCH, Weinheim (d) Godula K, Sames D (2006) C–H bond functionalization in complex organic synthesis. Science 312(5770):67–72 (e) Bergman RG (2007) Organometallic chemistry: C–H activation. Nature 446(7134):391–393

    Google Scholar 

  2. (a) Narayanam JMR, Stephenson CRJ (2011) Visible light photoredox catalysis: Applications in organic synthesis. Chem Soc Rev 40(1):102–113 (b) Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem Rev 113(7):5322–5363 (c) Schultz DM, Yoon TP (2014) Solar synthesis: Prospects in visible light photocatalysis. Science 343(6174):985

    Google Scholar 

  3. (a) Kracke GR, VanGordon MR, Sevryugina YV et al (2015) Carborane-derived local anesthetics are isomer dependent. Chemmedchem 10(1):62–67 (b) Wilkinson SM, Gunosewoyo H, Barron ML et al (2014) The first cns-active carborane: A novel P2X7 receptor antagonist with antidepressant activity. Acs Chem Neurosci 5(5):335–339 (c) Scholz M, Kaluderovic GN, Kommera H et al (2011) Carbaboranes as pharmacophores: Similarities and differences between aspirin and asborin. Eur J Med Chem 46(4):1131–1139 (d) Beer ML, Lemon J, Valliant JF (2010) Preparation and evaluation of carborane analogues of tamoxifen. J Med Chem 53(22):8012–8020 (e) Julius RL, Farha OK, Chiang J et al (2007) Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proc Natl Acad Sci USA 104(12):4808–4813

    Google Scholar 

  4. (a) Visbal R, Ospino I, Lopez-de-Luzuriaga JM et al (2013) N-heterocyclic carbene ligands as modulators of luminescence in three-coordinate gold (I) complexes with spectacular quantum yields. J Am Chem Soc 135(12):4712–4715 (b) Cioran AM, Musteti AD, Teixidor F et al (2012) Mercaptocarborane-capped gold nanoparticles: Electron pools and ion traps with switchable hydrophilicity. J Am Chem Soc 134(1):212–221 (c) Koshino M, Tanaka T, Solin N et al (2007) Imaging of single organic molecules in motion. Science 316(5826):853–853 (d) Yinghuai Z, Peng AT, Carpenter K et al (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127(27):9875–9880

    Google Scholar 

  5. (a) Hosmane NS, Maguire JA (2007) d- and f-Block metallacarbaboranes in Crabtree RH, Mingos DMP (eds) Comprehensive Organometallic Chemistry III, Elsevier, Oxford (b) Xie Z (2002) Advances in the chemistry of metallacarboranes of f-block elements. Coord Chem Rev 231(1–2):23–46 (c) Xie Z (2003) Cyclopentadienyl-carboranyl hybrid compounds: a new class of versatile ligands for organometallic chemistry. 36(1):1–9 (d) Deng L, Xie Z (2007) Advances in the chemistry of carboranes and metallacarboranes with more than 12 vertices. Coord Chem Rev 251(17–20):2452–2476 (e) Yao ZJ, Jin GX (2013) Transition metal complexes based on carboranyl ligands containing N, P, and S donors: Synthesis, reactivity and applications. Coordin Chem Rev 257(17–18):2522–2535 (f) Zhang J, Xie Z (2014) Synthesis, structure, and reactivity of 13- and 14-vertex carboranes. Acc Chem Res 47(5):1623–1633

    Google Scholar 

  6. (a) Wee KR, Han WS, Cho DW et al (2012) Carborane photochemistry triggered by aryl substitution: Carborane-based dyads with phenyl carbazoles. Angew Chem Int Ed 51(11):2677–2680 (b) Wee KR, Cho YJ, Song JK et al (2013) Multiple photoluminescence from 1,2-dinaphthyl-ortho-carborane. Angew Chem Int Ed 52(37):9682–9685 (c) Wee KR, Cho YJ, Jeong S et al (2012) Carborane-based optoelectronically active organic molecules: Wide band gap host materials for blue phosphorescence. J Am Chem Soc 134(43):17982–17990

    Google Scholar 

  7. (a) Wee KR, Han WS, Cho DW et al (2012) Carborane photochemistry triggered by aryl substitution: Carborane-based dyads with phenyl carbazoles. Angew Chem Int Ed 51(11):2677–2680 (b) Wee KR, Cho YJ, Jeong S et al (2012) Carborane-based optoelectronically active organic molecules: Wide band gap host materials for blue phosphorescence. J Am Chem Soc 134(43):17982–17990 (c) Ferrer-Ugalde A, Juarez-Perez EJ, Teixidor F et al (2012) Synthesis and characterization of new fluorescent styrene-containing carborane derivatives: The singular quenching role of a phenyl substituent. Chem-Eur J 18(2):544–553 (d) Wee KR, Cho YJ, Song JK et al (2013) Multiple photoluminescence from 1,2-dinaphthyl-ortho-carborane. Angew Chem Int Ed 52(37):9682–9685 (e) Shi C, Sun HB, Tang X et al (2013) Variable photophysical properties of phosphorescent iridium(iii) complexes triggered by closo- and nido-carborane substitution. Angew Chem Int Ed 52(50):13434–13438 (f) Shi C, Sun HB, Jiang QB et al (2013) Carborane tuning of photophysical properties of phosphorescent iridium (iii) complexes. Chem Commun 49 (42):4746–4748 (g) Bae HJ, Chung J, Kim H et al (2014) Deep red phosphorescence of cyclometalated iridium complexes by o-carborane substitution. Inorg Chem 53(1):128–138 (h) Naito H, Morisaki Y, Chujo Y (2015) o-Carborane-based anthracene: A variety of emission behaviors. Angew Chem Int Ed 54(17):5084–5087 (i) Ferrer-Ugalde A, Gonzalez-Campo A, Vinas C et al (2014) Fluorescence of new o-carborane compounds with different fluorophores: Can it be tuned? Chem-Eur J 20(32):9940–9951 (j) Tang C, Xie Z (2015) Nickel-catalyzed cross-coupling reactions of o-carboranyl with aryl iodides: Facile synthesis of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes. Angew Chem Int Ed 54(26):7662–7665

    Google Scholar 

  8. (a) Vinas C, Barbera G, Oliva JM et al (2001) Are halocarboranes suitable for substitution reactions? The case for 3-I-1,2-closo- C2B10H11: Molecular orbital calculations, aryldehalogenation reactions, 11B NMR interpretation of closo-carboranes, and molecular structures of 1-Ph-3-Br-1,2-closo- C2B10H10 and 3-Ph-1,2-closo-C2B10H11. Inorg Chem 40(26):6555–6562 (b) Aizawa K, Ohta K, Endo Y (2010) Synthesis of 3-aryl-1,2-dicarba-closo-dodecaboranes by suzuki-miyaura coupling reaction. Heterocycles 80(1):369–377 (c) Jin GF, Hwang JH, Lee JD et al (2013) A three-dimensional pi-electron acceptor, tri-phenyl-o-carborane, bearing a rigid conformation with end-on phenyl units. Chem Commun 49 (82):9398–9400 (d) Barbera G, Vaca A, Teixidor F et al (2008) Designed synthesis of new ortho-carborane derivatives: From mono- to polysubstituted frameworks. Inorg Chem 47(16):7309–7316 (e) Ohta K, Yamazaki H, Endo Y (2009) Magnesium-assisted intramolecular demethylation utilizing carborane C-H geometry. J Organomet Chem 694 (11):1646–1651 (f) Eriksson L, Beletskaya IP, Bregadze VI et al (2002) Palladium-catalyzed cross-coupling reactions of arylboronic acids and 2-i-p-carborane. J Organomet Chem 657(1–2):267–272 (g) Hawthorn.Mf, Wegner PA (1968) Reconstruction of 1,2-dicarbaclovododecaborane(12) structure by boron-atom insertion with (3)-1,2-dicarbollide ions. J Am Chem Soc 90(4):896–901. (h) Roscoe JS, Kongpric.S, Papetti S (1970) Icosahedral carboranes .14. Preparation of boron-substituted carboranes by boron-insertion reaction. Inorg Chem 9 (6):1561–1563. (i) Ogawa T, Ohta K, Yoshimi T et al (2006) M-carborane bisphenol structure as a pharmacophore for selective estrogen receptor modulators. Bioorg Med Chem Lett 16(15):3943–3946 (j) Safronov AV, Shlyakhtina NI, Hawthorne MF (2012) New approach to the synthesis of 3-alkyl-1,2-dicarba-closo-dodecaboranes: Reaction of alkyldichloroboranes with thallium dicarbollide. Organometallics 31(7):2764–2769 (k) Quan YJ, Xie ZW (2015) Palladium-catalyzed regioselective intramolecular coupling of o-carborane with aromatics via direct cage b-h activation. J Am Chem Soc 137(10):3502–3505 (l) Cao K, Huang YW, Yang JX et al (2015) Palladium catalyzed selective mono-arylation of o-carboranes via B-H activation. Chem Commun 51(33):7257–7260

    Google Scholar 

  9. Beletskaya IP, Bregadze VI, Kabytaev KZ et al (2007) Palladium-catalyzed amination of 2-iodo-para-carborane. Organometallics 26(9):2340–2347

    Google Scholar 

  10. Vondrak T, Plesek J, Hermanek S et al (1989) Charge-distribution in icosahedral carboranes: a UV photoelectron spectroscopic study. Polyhedron 8(6):805–811

    Google Scholar 

  11. Zhao D, Zhang J, Xie Z (2014) 1,3-dehydro-o-carborane: Generation and reaction with arenes. Angew Chem Int Ed 53(32):8488–8491

    Google Scholar 

  12. (a) Mo FY, Dong GB, Zhang Y et al (2013) Recent applications of arene diazonium salts in organic synthesis. Org Biomol Chem 11(10):1582–1593 (b) Hari DP, Konig B (2013) The photocatalyzed meerwein arylation: Classic reaction of aryl diazonium salts in a new light. Angew Chem Int Edit 52(18):4734–4743 (c) Ando, W (2010) Diazonium and Diazo Groups. Wiley, Chichester (d) Mahouche-Chergui S, Gam-Derouich S, Mangeney C et al (2011) Aryl diazonium salts: A new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem Soc Rev 40(7):4143–4166 (e) Roglans A, Pla-Quintana A, Moreno-Manas M (2006) Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem Rev 106(11):4622–4643 (f) Felpin FX, Nassar-Hardy L, Le Callonnec F et al (2011) Recent advances in the heck-matsuda reaction in heterocyclic chemistry. Tetrahedron 67(16):2815–2831 (g) Taylor JG, Moro AV, Correia CRD (2011) Evolution and synthetic applications of the heck-matsuda reaction: The return of arenediazonium salts to prominence. Eur J Org Chem (8):1403–1428

    Google Scholar 

  13. (a) Kalyani D, McMurtrey KB, Neufeldt SR et al (2011) Room-temperature C-H arylation: Merger of pd-catalyzed c-h functionalization and visible-light photocatalysis. J Am Chem Soc 133(46):18566–18569 (b) Hari DP, Schroll P, Konig B (2012) Metal-free, visible-light-mediated direct C-H arylation of heteroarenes with aryl diazonium salts. J Am Chem Soc 134(6):2958–2961 (c) Heinrich MR, Wetzel A, Kirschstein M (2007) Intermolecular radical carboaminohydroxylation of olefins with aryl diazonium salts and tempo. Org Lett 9 (19):3833–3835 (d) Pratsch G, Anger CA, Ritter K et al (2011) Hydroxy- and aminophenyl radicals from arenediazonium salts. Chem-Eur J 17(15):4104–4108 (e) Wetzel A, Ehrhardt V, Heinrich MR (2008) Synthesis of amino- and hydroxybiphenyls by radical chain reaction of arenediazonium salts. Angew Chem Int Ed 47(47):9130–9133 (f) Wetzel A, Pratsch G, Kolb R et al (2010) Radical arylation of phenols, phenyl ethers, and furans. Chem-Eur J 16(8):2547–2556 (g) Lazarides T, McCormick T, Du PW et al (2009) Making hydrogen from water using a homogeneous system without noble metals. J Am Chem Soc 131(26):9192–9194 (h) Liu HJ, Feng W, Kee CW et al (2010) Organic dye photocatalyzed alpha-oxyamination through irradiation with visible light. Green Chem 12(6):953–956 (i) ari DP, Hering T, Konig B (2012) Visible light photocatalytic synthesis of benzothiophenes. Org Lett 14(20):5334–5337 (j) Hartmann M, Li Y, Studer A (2012) Transition-metal-free oxyarylation of alkenes with aryl diazonium salts and tempona. J Am Chem Soc 134(40):16516–16519 (k) Ding YY, Cheng K, Qi CZ et al (2012) Ferrous salt-promoted homocoupling of arenediazonium tetrafluoroborates under mild conditions. Tetrahedron Lett 53(46):6269–6272

    Google Scholar 

  14. (a) Curran DP, Solovyev A, Brahmi MM et al (2011) Synthesis and reactions of n-heterocyclic carbene boranes. Angew Chem Int Ed 50(44):10294–10317 (b) Martin CD, Soleilhavoup M, Bertrand G (2013) Carbene-stabilized main group radicals and radical ions. Chem Sci 4(8):3020–3030 (c) Lu DM, Wu C, Li PF (2014) Synergistic effects of lewis bases and substituents on the electronic structure and reactivity of boryl radicals. Chem-Eur J 20(6):1630–1637 (d) Ueng SH, Fensterbank L, Lacote E et al (2010) Radical deoxygenation of xanthates and related functional groups with new minimalist n-heterocyclic carbene boranes. Org Lett 12(13):3002–3005 (e) Pan XC, Lacote E, Lalevee J et al (2012) Polarity reversal catalysis in radical reductions of halides by n-heterocyclic carbene boranes. J Am Chem Soc 134(12):5669–5674 (f) Pan XC, Vallet AL, Schweizer S et al (2013) Mechanistic and preparative studies of radical chain homolytic substitution reactions of n-heterocyclic carbene boranes and disulfides. J Am Chem Soc 135(28):1048410491

    Google Scholar 

  15. Zakharkin LI, Kovredov AI, Olshevskaya VA et al (1984) Synthesis of sigma-(ortho-carboran-9-yl)- and sigma-(meta-carboran-9-yl)-pi-cyclopentadienyldicarbonyliron and their rearrangement in reactions with bromine to pi-(ortho-carboran-9-yl)cyclopentadienyl and pi-(meta-carboran-9-yl)cyclopentadienyl-dicarbonyliron bromides, respectively. J Organomet Chem 267(1):81–91

    Google Scholar 

  16. Zharov I, Havlas Z, Orendt AM et al (2006) CB11Me11 boronium ylides: Carba-closo-dodecaboranes with a naked boron vertex. J Am Chem Soc 128(18):6089–6100

    Google Scholar 

  17. Ringstrand B, Kaszynski P (2013) Functionalization of the [closo-1-CB9H10] anion for the construction of new classes of liquid crystals. Acc Chem Res 46(2):214–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhao, D. (2016). Cage Boron Arylation of o-Carborane via Metal-Free, Visible-Light-Mediated Radical Coupling. In: Functionalization of Carborane via Carboryne Intermediates. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1569-4_7

Download citation

Publish with us

Policies and ethics