Skip to main content

Synthesis of Carborane-Functionalized Heterocycles: Dearomative [2 + 2] Cycloaddition and sp2 C–H Insertion Reaction

  • Chapter
  • First Online:
Functionalization of Carborane via Carboryne Intermediates

Part of the book series: Springer Theses ((Springer Theses))

  • 308 Accesses

Abstract

This chapter focuses on reaction of o-carboryne with N-protected indoles. An unexpected dearomative [2 + 2] cycloaddition is observed in the case of N-TMS indoles producing o-carborane-fused indolines in excellent chemoselectivity and isolated yields. In addition to the [2 + 2] cycloadducts, carboranylindoles derived from formal insertion reaction are also obtained for N-aryl indoles in which the product ratio is dependent upon the nature of substituents on aryl rings. The formal insertion reaction is dominant in the reaction of N-alkyl indoles. These protocols offer general and efficient methods for the preparation of o-carborane-functionalized indoles and indolines as well as other heterocycles. The observed dearomative [2 + 2] cycloaddition also represents the first example for indoles to undergo such reaction in the absence of transition metals or without UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Pouysegu L, Deffieux D, Quideau S (2010) Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron 66(13):2235–2261 (b) Roche SP, Porco JA (2011) Dearomatization strategies in the synthesis of complex natural products. Angew Chem Int Ed 50(18):4068–4093 (c) Zhuo C, Zhang W, You SL (2012) Catalytic asymmetric dearomatization reactions. Angew Chem Int Ed 51(51):12662–12686 (d) Ding QP, Zhou XL, Fan RH (2014) Recent advances in dearomatization of heteroaromatic compounds. Org Biomol Chem 12(27):4807–4815

    Google Scholar 

  2. Roche SP, Tendoung JJY, Treguier B (2015) Advances in dearomatization strategies of indoles. Tetrahedron 71(22):3549–3591

    Article  CAS  Google Scholar 

  3. (a) Zhang D, Song H, Qin Y (2011) Total synthesis of indoline alkaloids: a cyclopropanation strategy. Acc Chem Res 44(6):447–457 (b) Wang HX, Reisman SE (2014) Enantioselective total synthesis of (-)- lansai B and (+)- nocardioazines A and B. Angew Chem Int Ed 53(24):6206–6210 (c) Spangler JE, Davies HML (2013) Catalytic asymmetric synthesis of pyrroloindolines via a rhodium(II)-catalyzed annulation of indoles. J Am Chem Soc 135(18):6802–6805 (d) Repka LM, Ni J, Reisman SE (2010) Enantioselective synthesis of pyrroloindolines by a formal [3 + 2] cycloaddition reaction. J Am Chem Soc 132(41):14418–14420 (e) Li H, Hughes RP, Wu J (2014) Dearomative indole (3 + 2) cycloaddition reactions. J Am Chem Soc 136(17):6288–6296 (f) Kawano M, Kiuchi T, Negishi S et al (2013) Regioselective inter- and intramolecular formal [4 + 2] cycloaddition of cyclobutanones with indoles and total synthesis of (±)-aspidospermidine. Angew Chem Int Ed 52(3):906–910 (g) Zhang GZ, Huang XG, Li GT et al (2008) Au-containing all-carbon 1,4-dipoles: Generation and [4 + 2] annulation in the formation of carbo-/heterocycles. J Am Chem Soc 130(6):1814–1815. (h) Martin DBC, Vanderwal CD (2009) Efficient access to the core of the strychnos, aspidosperma and Iboga alkaloids. A short synthesis of norfluorocurarine. J Am Chem Soc 131(10):3472–3473 (i) Robertson FJ, Kenimer BD, Wu J (2011) Direct annulation and alkylation of indoles with 2-aminobenzyl alcohols catalyzed by TFA. Tetrahedron 67(24):4327–4332

    Google Scholar 

  4. (a) England DB, Kuss TDO, Keddy RG et al (2001) Cyclopentannulation of 3-alkylindoles: a synthesis of a tetracyclic subunit of the kopsane alkaloids. J Org Chem 66(13):4704–4709 (b) Bajtos B, Yu M, Zhao HD et al (2007) C-2/C-3 annulation and C-2 alkylation of indoles with 2-alkoxycyclopropanoate esters. J Am Chem Soc 129(31):9631–9634 (c) Barluenga J, Tudela E, Ballesteros A et al (2009) Asymmetric C2-C3 cyclopentannulation of the indole ring. J Am Chem Soc 131(6):2096–2097 (d) Lian YJ, Davies HML (2010) Rhodium-catalyzed [3 + 2] annulation of indoles. J Am Chem Soc 132(2):440–441 (e) Xiong H, Xu H, Liao SH et al (2013) Copper-catalyzed highly enantioselective cyclopentannulation of indoles with donor-acceptor cyclopropanes. J Am Chem Soc 135(21):7851–7854

    Google Scholar 

  5. (a) Wenkert E, Moeller PDR, Piettre SR (1988) 5-membered aromatic heterocycles as dienophiles in diels-alder reactions—furan, pyrrole, and indole. J Am Chem Soc 110(21):7188–7194 (b) Hsieh MF, Rao PD, Liao CC (1999) Diels-alder and michael addition reactions of indoles with masked o-benzoquinones: synthesis of highly functionalized hydrocarbazoles and 3-arylindoles. Chem Comm (15):1441–1442 (c) Biolatto B, Kneeteman M, Paredes E et al (2001) Reactions of 1-tosyl-3-substituted indoles with conjugated dienes under thermal and/or high-pressure conditions. J Org Chem 66(11):3906–3912 (d) Cai Q, You SL (2012) Organocatalyzed enantioselective formal [4 + 2] cycloadclition of 2,3-disubstituted indole and methyl vinyl ketone. Org Lett 14(12):3040–3043

    Google Scholar 

  6. Mei GJ, Yuan H, Gu YQ et al (2014) Dearomative indole [5 + 2] cycloaddition reactions: Stereoselective synthesis of highly functionalized cyclohepta[b]indoles. Angew Chem Int Ed 53(41):11051–11055

    Article  CAS  Google Scholar 

  7. Gribble GW (2010) Heterocyclic scaffolds II: topics in heterocyclic chemistry. Springer, Berlin

    Book  Google Scholar 

  8. (a) Zhang LM (2005) Tandem au-catalyzed 3,3-rearrangement-[2 + 2] cycloadditions of propargylic esters: Expeditious access to highly functionalized 2,3-indoline-fused cyclobutanes. J Am Chem Soc 127(48):16804–16805 (b) Jia MQ, Monari M, Yang QQ et al (2015) Enantioselective gold catalyzed dearomative [2 + 2]-cycloaddition between indoles and allenamides. Chem Comm 51(12):2320–2323 (c) Faustino H, Bernal P, Castedo L et al (2012) Gold(i)-catalyzed intermolecular [2 + 2]cycloadditions between allenamides and alkenes. Adv Synth Catal 354(9):1658–1664

    Google Scholar 

  9. (a) Pozharskii AF, Soldatenkov AT, Katrizky AR (2011) Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications, 2nd edn. Wiley, Chichester (b) Quin LD, Tyrell JA (2010) Fundamentals of heterocyclic chemistry: importance in nature and in the synthesis of pharmaceuticals. Wiley, New York

    Google Scholar 

  10. (a) Sundberg RJ (1970) The chemistry of indoles. Academic Press, New York (b) Houlihan WJ. Indoles. Wiley-Interscience, New York (c) Thomas EJ (2000) Science of synthesis. Thieme, Stuttgart (d) Katritzky AR, Scriven EFV, Rees CW (2008) Comprehensive heterocyclic chemistry III. Elsevier, Oxford

    Google Scholar 

  11. (a) Cacchi S, Fabrizi G (2005) Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev 105(7):2873–2920 (b) Beccalli EM, Broggini G, Martinelli M et al (2007) C–C, C–O, C–N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem Rev 107(11):5318–5365 (c) Seregin IV, Gevorgyan V (2007) Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem Soc Rev 36(7):1173–1193 (d) Bandini M, Eichholzer A (2009) Catalytic functionalization of indoles in a new dimension. Angew Chem Int Ed 48(51):9608–9644 (e) Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem Rev 110(2):1147–1169

    Google Scholar 

  12. a) Bandini M, Melloni A, Umani-Ronchi A (2004) New catalytic approaches in the stereoselective friedel-crafts alkylation reaction. Angew Chem Int Ed 43 (5):550–556 (b) You SL, Cai Q, Zeng M (2009) Chiral bronsted acid catalyzed friedel-crafts alkylation reactions. Chem Soc Rev 38 (8):2190-2201 (c) Poulsen TB, Jorgensen KA (2008) Catalytic asymmetric friedel-crafts alkylation reactions-copper showed the way. Chem Rev 108 (8):2903-2915

    Google Scholar 

  13. (a) Kracke GR, VanGordon MR, Sevryugina YV et al (2015) Carborane-derived local anesthetics are isomer dependent. Chemmedchem 10(1):62–67 (b) Wilkinson SM, Gunosewoyo H, Barron ML et al (2014) The first cns-active carborane: a novel P2X7 receptor antagonist with antidepressant activity. Acs Chem Neurosci 5(5):335–339 (c) Scholz M, Kaluderovic GN, Kommera H et al (2011) Carbaboranes as pharmacophores: similarities and differences between aspirin and asborin. Eur J Med Chem 46(4):1131–1139 (d) Beer ML, Lemon J, Valliant JF (2010) Preparation and evaluation of carborane analogues of tamoxifen. J Med Chem 53(22):8012–8020 (e) Julius RL, Farha OK, Chiang J et al (2007) Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proc Natl Acad Sci USA 104(12):4808–4813

    Google Scholar 

  14. (a) Visbal R, Ospino I, Lopez-de-Luzuriaga JM et al (2013) N-heterocyclic carbene ligands as modulators of luminescence in three-coordinate gold(I) complexes with spectacular quantum yields. J Am Chem Soc 135(12):4712–4715 (b) Cioran AM, Musteti AD, Teixidor F et al (2012) Mercaptocarborane-capped gold nanoparticles: electron pools and ion traps with switchable hydrophilicity. J Am Chem Soc 134(1):212–221 (c) Koshino M, Tanaka T, Solin N et al (2007) Imaging of single organic molecules in motion. Science 316(5826):853–853 (d) Yinghuai Z, Peng AT, Carpenter K et al (2005) Substituted carborane-appended water-soluble single-wall carbon nanotubes: New approach to boron neutron capture therapy drug delivery. J Am Chem Soc 127(27):9875–9880

    Google Scholar 

  15. (a) Hosmane NS, Maguire JA (2007) d- and f-Block metallacarbaboranes. In: Crabtree RH, Mingos DMP (eds) Comprehensive organometallic chemistry III, Elsevier, Oxford (b) Xie Z (2002) Advances in the chemistry of metallacarboranes of f-block elements. Coord Chem Rev 231(1–2):23–46 (c) Xie Z (2003) Cyclopentadienyl-carboranyl hybrid compounds: a new class of versatile ligands for organometallic chemistry. 36(1):1–9 (d) Deng L, Xie Z (2007) Advances in the chemistry of carboranes and metallacarboranes with more than 12 vertices. Coord Chem Rev 251(17–20):2452–2476 (e) Yao ZJ, Jin GX (2013) Transition metal complexes based on carboranyl ligands containing N, P, and S donors: Synthesis, reactivity and applications. Coordin Chem Rev 257 (17–18):2522–2535 (f) Zhang J, Xie Z (2014) Synthesis, structure, and reactivity of 13-and 14-vertex carboranes. Acc Chem Res 47(5):1623–1633

    Google Scholar 

  16. (a) Wee KR, Han WS, Cho DW et al (2012) Carborane photochemistry triggered by aryl substitution: carborane-based dyads with phenyl carbazoles. Angew Chem Int Ed 51(11):2677–2680 (b) Wee KR, Cho YJ, Song JK et al (2013) Multiple photoluminescence from 1,2-dinaphthyl-ortho-carborane. Angew Chem Int Ed 52(37):9682–9685 (c) Wee KR, Cho YJ, Jeong S et al (2012) Carborane-based optoelectronically active organic molecules: wide band gap host materials for blue phosphorescence. J Am Chem Soc 134(43):17982–17990

    Google Scholar 

  17. Tietze LF, Griesbach U, Bothe U et al (2002) Novel carboranes with a DNA binding unit for the treatment of cancer by boron neutron capture therapy. Chem Bio Chem 3(2–3):219–225

    Article  CAS  Google Scholar 

  18. Grimes RN (2011) Carboranes, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  19. (a) Hosmane NS (2011) Boron science: new technologies and applications. CRC Press, Boca Raton (b) Grimes RN (2015) Carboranes in the chemist’s toolbox. Dalton Trans 44(13):5939–5956 (c) Bregadze VI (1992) Dicarba-closo-dodecaboranes C2B10H12 and their derivatives. Chem Rev 92(2):209–223

    Google Scholar 

  20. (a) Qiu Z, Wang SR, Xie Z (2010) Nickel-catalyzed regioselective [2 + 2 + 2] cycloaddition of carboryne with alkynes. Angew Chem Int Edit 49(27):4649–4652 (b) Qiu Z, Xie Z (2014) Generation and reactivity of o-carborynes. Dalton Trans 43(13):4925–4934

    Google Scholar 

  21. Huang QR, Gingrich HL, Jones M (1991) Ene reactions of 1,2-dehydro-ortho-carborane. Inorg Chem 30(17):3254–3257

    Article  CAS  Google Scholar 

  22. Wang SR, Qiu Z, Xie Z (2011) Regioselective insertion of carborynes into ethereal C-H bond: Facile synthesis of alpha-carboranylated ethers. J Am Chem Soc 133(15):5760–5763

    Article  CAS  Google Scholar 

  23. Wang SR, Xie Z (2012) Formal insertion of o-carborynes into ferrocenyl C-H bonds: A simple access to o-carboranylferrocenes. Organometallics 31(12):4544–4550

    Article  CAS  Google Scholar 

  24. Gona KB, Thota JLVNP, Baz Z et al (2015) Synthesis and C-11-radiolabelling of 2-carboranyl benzothiazoles. Molecules 20(5):7495–7508

    Article  CAS  Google Scholar 

  25. Liu Q, Zhao QY, Liu J et al (2012) A trans diacyloxylation of indoles. Chem Commun 48(26):3239–3241

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Zhao .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zhao, D. (2016). Synthesis of Carborane-Functionalized Heterocycles: Dearomative [2 + 2] Cycloaddition and sp2 C–H Insertion Reaction. In: Functionalization of Carborane via Carboryne Intermediates. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-1569-4_3

Download citation

Publish with us

Policies and ethics