Skip to main content

Recent Developments in Diabetes Therapy

  • Chapter
  • First Online:
Diabetes Mellitus in 21st Century

Abstract

Gene therapy is a newer approach in the twenty-first century which developed through the advancement of molecular biology and Human Genome Project. It has emerged as a key future strategy to cure both T1DM and T2DM. Gene therapy is accomplished by introducing DNA into cells, which can be carried out by several methods. Viral vectors (recombinant viruses) and non-viral vectors (naked DNA or DNA complexes) are mostly used in such process. Gene therapy usually targets the β cells of pancreatic islet or the insulin sensitivity toward the peripheral tissues. Introduction of DNA into target cells artificially should be stable and functional; it is also necessary that the target cells should accept the new DNA properly for natural reproduction function. Usually, ex vivo engineering and in vivo delivery methods are used in gene therapy. In ex vivo method, a cell will be isolated from the host and used as a transgene factory, and genetic manipulation is carried out in a laboratory. Cell expansion may or may not be part of it. This strategy is mostly employed in gene therapy. On the other hand, in vivo gene transfer method genetic modification is carried out in situ using vector-mediated delivery of genetic material into specific target organ. It is a difficult method due to selection of gene delivery vehicle that becomes an issue (Welsh 2000; Giannoukakis and Trucco 2003; Creusot and Fathman 2004; Bertolaso et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous. Anakinra improves glycaemia in type 2 diabetes. BMJ. 2007;334: 822.

    Google Scholar 

  • Anonymous. DIAPREV-IT study of diabetes therapy Diamyd® receives further funding and will continue despite disappointing Phase III trial results. Immunotherapy. 2011;3:923–4.

    Google Scholar 

  • Anonymous. Evotec announces update on DiaPep277®. 2014. Accessed from: http://www.evotec.com/article/en/Press-releases/Evotec-announces-update-on-DiaPep277/2653.

  • Apple J. Diapep277: slowing the progression of type 1 diabetes. 2012. Accessed on: http://asweetlife.org/feature/diapep277-slowing-the-progression-of-type-1-diabetes/.

  • Bertolaso M, Olsson J, Picardi A, Rakela J. Gene therapy and enhancement for diabetes (and other diseases): the multiplicity of considerations. Diabetes Metab Res Rev. 2010;26:520–4.

    Article  CAS  PubMed  Google Scholar 

  • Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AMJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2014;7:212–23.

    Google Scholar 

  • Creusot RJ, Fathman CG. Gene therapy for type 1 diabetes: a novel approach for targeted treatment of autoimmunity. J Clin Invest. 2004;114:892–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan C. Diabetes ‘vaccines’: can an injection prevent diabetes? Diabetes Voice. 2005;50:23–5.

    Google Scholar 

  • Diamyd Medical. Diabetes clinical trials. 2014. Accessed from: http://www.diamyd.com/docs/trialsDiabetes.aspx?section=trials.

  • Giannoukakis N, Trucco M. Gene therapy technology applied to disorders of glucose metabolism: promise, achievements, and prospects. Biotechniques. 2003;35:122–45.

    CAS  PubMed  Google Scholar 

  • Goa C, Holscher C, Liu Y, Li L. GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Reviews Neurosci. 2012;23:1–11.

    Article  Google Scholar 

  • Goldfine AB, Fonseca V, Jablonski KA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinke SA. Diamyd, an alum-formulated recombinant human GAD65 for diabetes and the prevention of autoimmune diabetes. Curr Opin Mol Ther. 2008;10:1–10.

    Google Scholar 

  • Hussain M, Theise ND. Stem-cell therapy for diabetes mellitus. Lancet. 2004;364:203–5.

    Article  PubMed  Google Scholar 

  • Ito M, Fukuda S, Sakata S, Morinaga H, Ohta T. Pharmacological effects of JTT-551, a novel protein tyrosine phosphatase 1b inhibitor, in diet-induced obesity mice. Journal of Diabetes Research. 2014;2014:1–7.

    Article  Google Scholar 

  • Johnson TO, Ermolieff J, Jirousek MR. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov. 2002;1:696–709.

    Article  CAS  PubMed  Google Scholar 

  • Juang J. Islet transplantation: an update. Chang Gung Med J. 2004;27:1–15.

    PubMed  Google Scholar 

  • Kim DK, Gang GT, Ryu D, et al. Inverse agonist of nuclear receptor ERRγ mediates antidiabetic effect through inhibition of hepatic gluconeogenesis. Diabetes. 2013;62:3093–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen CM, Faulenbach M, Vaag A. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32:1663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen TM, Toubro S, van Baak MA, et al. Effect of a 28-d treatment with L-796568, a novel beta(3)-adrenergic receptor agonist, on energy expenditure and body composition in obese men. American Journal of Clinical Nutrition. 2002;76:780–8.

    CAS  PubMed  Google Scholar 

  • Li M, Ikehara S. Bone marrow stem cell as a potential treatment for diabetes. Journal of Diabetes Research. 2013;2013:1–5.

    Google Scholar 

  • McCall MD, Tosa C, Baetge EE, Shapiro AMJ. Are stem cells a cure for diabetes? Clin Sci. 2010;118:87–97.

    Article  Google Scholar 

  • Merani S, Shapiro AMJ. Current status of pancreatic islet transplantation. Clin Sci. 2006;110:611–25.

    Article  CAS  PubMed  Google Scholar 

  • NDIC. Pancreatic Islet Transplantation. 2014. Accessed from: http://diabetes.niddk.nih.gov/dm/pubs/pancreaticislet/.

  • Ong SL, Gravante G, Pollard CA, et al. Total pancreatectomy with islet autotransplantation: an overview. HPB. 2009;11:613–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel KP, Joshi HM, Majumdar FD, Patel VJ. Newer approaches in the treatment of diabetes mellitus. NHL Journal of Medical Sciences. 2013;2:6–11.

    Google Scholar 

  • Raz I, Ziegler AG, Linn T, et al. Treatment of recent-onset type 1 diabetic patients with DiaPep277: results of a double-blind, placebo- controlled, randomized phase 3 trial. Diabetes Care. 2014;37:1392–400.

    Article  CAS  PubMed  Google Scholar 

  • Rother KI, Harlan DM. Challenges facing islet transplantation for the treatment of type 1 diabetes mellitus. Journal of Clinical Investigation. 2004;114:877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sameer M, Balasubramanyam M, Mohan V. Stem cells and diabetes. Curr Sci. 2006;91:1158–65.

    CAS  Google Scholar 

  • Wagman AS, Johnson KW, Bussiere DE. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 2004;10:1105–37.

    Article  CAS  PubMed  Google Scholar 

  • Weir G. Do stem cells hold the key to a future cure for diabetes? DiabetesVoice. 2008;53:29–31.

    Google Scholar 

  • Welsh N. Prospects for gene therapy of diabetes mellitus. Gene Ther. 2000;7:181–2.

    Article  CAS  PubMed  Google Scholar 

  • Yang L. Liver stem cell-derived h-cell surrogates for treatment of type 1 diabetes. Autoimmun Rev. 2006;5:409–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sen, S., Chakraborty, R., De, B. (2016). Recent Developments in Diabetes Therapy. In: Diabetes Mellitus in 21st Century. Springer, Singapore. https://doi.org/10.1007/978-981-10-1542-7_12

Download citation

Publish with us

Policies and ethics