Skip to main content

A Comparative Study of Decoupler Design Techniques for TITO Control Processes

  • Conference paper
  • First Online:
Emerging Trends in Electrical, Communications and Information Technologies

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 394))

Abstract

In industrial control, the performance of multiple input and multiple output processes is constrained by an interaction in the plant dynamics. The interaction between the variables is abridged to the minimum degree by opting appropriate control configuration and designing the controller for each loop autonomously. Conversely, when interaction is modest, the controller often used with decoupler elements. This paper presents a comparative study of decoupler design for minimization of interaction among the controllers. The decoupler is designed and incorporated in control loop amid controller and process. This decomposes the MIMO system into multiple single loops and each loop controller is designed by using any existing SISO tuning method. This approach is straightforward, simple to know and implemented in practice. A case study is incorporated to validate the effectiveness of projected approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maciejowski JM (2002) Predictive control: with constraints. Pearson education

    Google Scholar 

  2. Luyben WL (1970) Distillation decoupling. AIChE J 16(2):198–203

    Article  Google Scholar 

  3. Weischedel K, McAvoy TJ (1980) Feasibility of decoupling in conventionally controlled distillation columns. IEC Fund 19(4):379–384

    Article  Google Scholar 

  4. Waller (Toijala) KVT (1974) Decoupling in distillation. AIChE J 20(3):592–594

    Google Scholar 

  5. Arkun Y, Manouslouthakis B, Palazoglu A (1984) Robustness analysis of process control systems. A case study of decoupling control in distillation. IEC Process Des Dev 23(1):93–101

    Google Scholar 

  6. Shinskey FG (1988) Process control systems: application, design and adjustment. McGraw-Hill, New York

    Google Scholar 

  7. Wang QG, Huang B, Guo X (2000) Auto-tuning of TITO decoupling controllers from step tests. ISA Trans 39(4):407–418

    Article  Google Scholar 

  8. Wade HL (1997) Inverted decoupling: a neglected technique. ISA Trans 36(1):3–10

    Article  Google Scholar 

  9. Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralised PI (PID) controllers for TITO processes. Control Eng Pract 14(9):1069–1080

    Article  Google Scholar 

  10. Nordfeldt P, Hägglund T (2006) Decoupler and PID controller design of TITO systems. J Process Control 16(9):923–936

    Article  Google Scholar 

  11. Shen Y, Cai WJ, Li S (2010) Normalized decoupling control for high-dimensional MIMO processes for application in room temperature control HVAC systems. Control Eng Pract 18(6):652–664

    Article  Google Scholar 

  12. Shen Y, Cai WJ, Li S (2009) Multivariable process control: decentralized, decoupling, or sparse? Ind Eng Chem Res 49(2):761–771

    Article  Google Scholar 

  13. Shen Y, et al. (2011) Partial decoupling control for multivariable processes. Ind Eng Chem Res 50(12):7380–7387

    Google Scholar 

  14. Maghade DK, Patre BM (2012). Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA Trans 51(4):550–558

    Google Scholar 

  15. Rajapandiyan C, Chidambaram M (2012) Controller design for MIMO processes based on simple decoupled equivalent transfer functions and simplified decoupler. Ind Eng Chem Res 51(38):12398–12410

    Google Scholar 

  16. Vu TNL, Lee M (2013) An extended method of simplified decoupling for multivariable processes with multiple time delays. J Chem Eng Jpn 46(4):279–293

    Google Scholar 

  17. Garrido J, Vázquez F, Morilla F (2011) An extended approach of inverted decoupling. J Process Control 21(1):55–68

    Article  Google Scholar 

  18. Cai WJ, et al. (2008) Normalized decoupling a new approach for MIMO process control system design. Ind Eng Chem Res 47(19):7347–7356

    Google Scholar 

  19. He MJ, Cai WJ, Ni W, Xie LH (2009) RNGA based control system configuration for multivariable processes. J Process Control 19(6):1036–1042

    Article  Google Scholar 

  20. Skogestad S (2003) Simple analytical rules for model reduction and PID controller tuning. J Process Control 13(4):291–309

    Article  MathSciNet  Google Scholar 

  21. Naik RH, Ashok Kumar DV, Anjaneyulu KSR (2014) Control configuration selection and controller design for multivariable processes using normalized gain. Int J Electr Comput Electron Commun Eng 8(10). World Academy of Science, Engineering and Technology

    Google Scholar 

  22. Morari M, Zafiriou E (1989) Robust process control. Prentice-Hall, Englewood Cliffs, NJ

    MATH  Google Scholar 

  23. Gagnon E, Pomerleau A, Desbiens A (1998) Simplified, ideal or inverted decoupling? ISA Trans 37(4):265–276

    Article  Google Scholar 

  24. Luyben WL (1986) Simple method for tuning SISO controllers in multivariable systems. Ind Eng Chem Proc Des Dev 25:654–669

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hanuma Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Naik, R.H., Ashok Kumar, D.V., Anjaneyulu, K.S.R. (2017). A Comparative Study of Decoupler Design Techniques for TITO Control Processes. In: Attele, K., Kumar, A., Sankar, V., Rao, N., Sarma, T. (eds) Emerging Trends in Electrical, Communications and Information Technologies. Lecture Notes in Electrical Engineering, vol 394. Springer, Singapore. https://doi.org/10.1007/978-981-10-1540-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1540-3_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1538-0

  • Online ISBN: 978-981-10-1540-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics