Skip to main content

Arthropods on Cotton: A Comparison Between Bt and Non-Bt Cotton

  • Chapter
  • First Online:
Economic and Ecological Significance of Arthropods in Diversified Ecosystems

Abstract

Adopting monocultures of traditional cotton enhances activity of pest insects and reduces the activity of predatory insects. Cultivating cotton with other crops such as sunflower (Helianthus annuus) and sorghum (Sorghum bicolor) served as refugia for predators of pests on cotton. Thus, increased habitat diversity by strip cropping in monocultures of cotton increases the population of predators. Transgenic cotton (Bt) largely suppressed populations of lepidopteran pests. Insecticidal sprays reduced populations of predators both on non-Bt and Bt cotton. Bt cotton alters the arthropod community by reducing the abundance of Helicoverpa populations. Bt cotton may also have indirect effects on the abundance of parasitoids and predators that specialize on lepidopteran pests. A 6-year research revealed that the impact of Bt cotton on minor pests and non-intended species was of less importance, particularly when compared to insecticides. Cotton ecosystem is uniquely characterized by secondary pest outbreaks, genetically engineered plants, changing arthropod communities and extrafloral (EF) nectaries. Each characteristic influences arthropod communities and crop productivity in turn in different ways. Although reduction in insecticidal use in some regions may alleviate the pest problems, much of the problems can be tackled by adopting integrated pest management (IPM) practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abney RM, Sorenson EC, Bradley JR (2007) Alternate crop hosts as resistance management refuges for tobacco budworm, Heliothis virescens, (Lepidoptera: Noctuidae) in North Carolina. J Cotton Sci 11:35–39

    Google Scholar 

  • Adjei-Maafo IK, Wilson LT (1983) Factors affecting the relative abundance of arthropods on nectaried and nectariless cotton. Environ Entomol 12:349–352

    Article  Google Scholar 

  • Altieri MA (1991) Increasing biodiversity to improve insect pest management in agro-ecosystems. In: Hawksworth DL (ed) Biodiversity of microorganisms and invertebrates: it’s role in sustainable agriculture. CAB Int, Wallingford, p 302

    Google Scholar 

  • Andow DA, Risch SJ (1985) Predation in diversified agroecosystems: relations between a coccinellid predator Coleomegilla maculata and its food. J Appl Ecol 22:357–372

    Article  Google Scholar 

  • Baggen LR, Gurrm GM (1998) The influence of food on Copidosoma koehleri, and the use of flowering plants as a habitat management tool to enhance biological control of potato moth. Phthorimaea operculella. Biol Control 11(1):9–17

    Article  Google Scholar 

  • Bal HK, Dhawan AK (2009) Effect of transgenic cotton on arthropod diversity under sprayed and unsprayed conditions in cotton agro-ecosystem. Pestic Res J 21(2):126–132

    Google Scholar 

  • Beirne BP (1967) Pest management. CRC Press, Cleveland, p 123

    Google Scholar 

  • Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Ann Rev Ecol Syst 8:407–427

    Article  CAS  Google Scholar 

  • Bourzac Katherine (2006) Edible cotton. MIT Technology Review

  • Brévault T, Bikay S, Maldes JM, Naudin K (2007) Impact of a no-till with mulch soil management strategy on soil macrofauna communities in a cotton cropping system. Soil Tillage Res 97:140–149

    Article  Google Scholar 

  • Brown G, Pasini A, Benito NP, Aquino AM, Correia E (2001) Diversity and functional role of soil macrofauna communities in Brazilian no tillage agroecosytems. In: Lal R (ed) International symposium on managing biodiversity in agricultural ecosystems, Montreal. p 19

    Google Scholar 

  • Brust GE, Stinner BR, McCartney DA (1985) Tillage and soil insecticide effects on predator-black cutworm (Lepidoptera: Noctuidae) interactions in corn agroecosystems. J Econ Entomol 78:1389–1392

    Article  Google Scholar 

  • Bugg RL, Ellis RT, Carlson RW (1989) Ichneumonidae (Hymenoptera) using extrafloral nectar of faba bean (Vicia faba L.: Fabaceae) in Massachusetts. Biol Agric Hortic 6:107–114

    Article  Google Scholar 

  • Burton S (1998) A history of India. Blackwell Publishing, Oxford, p 47

    Google Scholar 

  • Cattaneo MG (2006) Farm scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use and yield. PNAS 103(20):7571–7576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins FL, Johnson SJ (1985) Reproductive response of caged adult velvetbean caterpillar and soybean looper to the presence of weeds. Agric Ecosyst Environ 14:139–149

    Article  Google Scholar 

  • Cortesero AM, Stapel JO, Lewis WJ (2000) Understanding and manipulating plant attributes to enhance biological control. Biol Control 17:35–49

    Article  Google Scholar 

  • Cox RD, Wermuth N (1993) Linear dependencies represented by chain graphs. Stat Sci Inst Math Stat 8(3):204–218

    Google Scholar 

  • Dhillon KM, Gujar TG, Kalia V (2011) Impact of Bt cotton on insect biodiversity in cotton ecosystem in India. Pak Entomol 33(2):161–165

    Google Scholar 

  • Dickson LL, Whitham TG (1996) Genetically-based plant resistance traits affect arthropods, fungi, and birds. Oecologia 106:400–406

    Article  Google Scholar 

  • Dutcher JD (2007) A review of resurgence and replacement causing pest outbreaks in IPM. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, Dordrecht, pp 27–43

    Chapter  Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt-toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

    Article  Google Scholar 

  • Dutton AL, Obrist, D’Alessandro M, Diener L, Mu J, Romeis M, Bigler F (2004) Tracking Bt-toxin in transgenic maize to assess the risks on non-target arthropods. IOBC WPRS Bull 27:57–63

    Google Scholar 

  • Ellsworth PC, Fournier A, Smith TD (2007) Arizona cotton insect losses, publication AZ1183. College of Agriculture and Life Sciences, Cooperative Extension, University of Arizona, Tucson

    Google Scholar 

  • England S, Evans EW (1997) Effects of pea aphid (Homoptera: Aphididae) honeydew on longevity and fecundity of the alfalfa weevil (Coleoptera: Curculionidae) parasitoid, Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Environ Entomol 26:1437–1441

    Article  Google Scholar 

  • Fitt GP (1989) The ecology of Heliothis in relation to agroecosystems. Ann Rev Entomol 34:17–52

    Article  Google Scholar 

  • Gillespie RG, New TR (1998) Compatibility of pest management and conservation strategies. In: Pest management—Future challenges: Proceedings of 6th Australian applied entomology research conference 29 Sept–2 Oct. vol 2, ed. MP Zaluki, RAI Drew, GG White, Brisbane: University of Queensland. pp 356

    Google Scholar 

  • Goller E, Nunnenmacher L, Goldbach HE (1997) Faba beans as a cover crop in organically grown hops: influence on aphids and aphid antagonists. Biol Agric Hortic 15:279–284

    Article  Google Scholar 

  • Gurr GM, Van Emden HF, Wratten SD (1998) Habitat manipulation and natural enemy efficiency: implications for the control of pests. In: Barbosa P (ed) Conservation biological control. Academic, San Diego, pp 155–183

    Chapter  Google Scholar 

  • Hagen KS, Hale R (1974) Increasing natural enemies through use of supplementary feeding and non-target prey. Proceedings Summer Inst. for Biological control of plant insects and diseases. Mississippi Univ. Press, Jackson, p 647

    Google Scholar 

  • Hardin MR, Benrey B, Coll M, Lamp WO, Roderick GK, Barbosa P (1995) Arthropod pest resurgence: an overview of potential mechanisms. Crop Prot 14:3–18

    Article  Google Scholar 

  • Head G, Moar W, Eubanks M, Freeman B, Ruberson J, Hagerty A, Turnipseed S (2005) A multiyear, large-scale comparison of arthropod populations on commercially managed Bt and Non-Bt cotton fields. Environ Entomol 34:1257–1266

    Google Scholar 

  • Henneberry TJ, Bariola LA, Kittock DL (1977) Nectariles cotton: effect on cotton leafperforator and other cotton insects in Arizona. J Econ Entomol 70:797–799

    Article  Google Scholar 

  • Horton D, Bellinger B, Pettis GV, Brannen PM, Mitchum WE (2005) Pest management strategic plan for eastern peaches. USDA Agricultural Research Service/CSREES [Cooperative State Research, Education, and Extension Services]. http://www.ipmcenters.org/pmsp/pdf/EasyPeach.pdf; http://www.cottonspinning.com/grow/plantingcottonseeds.html “Planting Cotton Seeds”

  • Janaki Krishna PS (2006) Effects of transgenic cotton on biodiversity, pesticide use and yield. ISB News Report

    Google Scholar 

  • Jervis MA, Kidd NAC (1986) Host feeding strategies in hymenopteran parasitoids. Biol Rev 61:395–434

    Article  Google Scholar 

  • Jervis MA, Kidd NAC, Fitton MG, Huddleston T, Dawah HA (1993) Flower visiting by hymenopteran parasitoids. J Nat Hist 27:67–105

    Article  Google Scholar 

  • Khan MQ, Rao VP (1960) Insect and mite pest on cotton in India. Indian Cent Cotton Common, Bombay, pp 207–301

    Google Scholar 

  • Koptur S (1992) Extrafloral nectary-mediated interactions between insects and plants. In: Bernays E (ed) Insect–plant interactions, vol IV. CRC Press, Boca Raton, pp 81–129

    Google Scholar 

  • Kumar R, Kranthi S, Nitharwal M, Jat SL, Monga D (2012) Influence of pesticides and application methods on pest and predatory arthropods associated with cotton. Phytoparasitica 40:417–424

    Article  CAS  Google Scholar 

  • Lal R (1988) Effects of macrofauna on soil properties in tropical ecosystems. Agric Ecosyst Environ 24:101–116

    Article  Google Scholar 

  • Longley M, Sotherton NW (1997) Factors determining the effects of pesticides upon butterflies inhabiting arable farmland. Agric Ecosyst Environ 61:1–12

    Article  CAS  Google Scholar 

  • Loranger G, Ponge JF, Blanchart E, Lavelle P (1999) Influence of agricultural practices on arthropod communities in a vertisol (Martinique). Eur J Soil Biol 34:157–165

    Article  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487(7407):362–365

    Article  CAS  PubMed  Google Scholar 

  • McIntyre S (1994) Integrating agricultural land-use and management for the conservation of a native grassland flora in a variegated landscape. Pac Conserv Biol 1:236–244

    Article  Google Scholar 

  • Mendelsohn M, Kough J, Vaituzis Z, Matthews K (2003) Nat Biotechnol 21(9):1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Mensah RK (1996) Suppression of Helicoverpa spp. (Lepidoptera: Noctuidae) oviposition by use of the natural enemy food supplement Envirofeast (R). Aust J Entomol 35:323–329

    Article  Google Scholar 

  • Mensah RK (1999) Habitat diversity: implications for the conservation and use of predatory insects of Helicoverpa spp. in cotton systems in, Australia. Int J Pest Manag 45(2):91–100

    Article  Google Scholar 

  • Mensah RK, Harris WE (1995) Using Envirofeast spray and refugia technology for cotton pest control. Aust Cotton Grow 16:30–33

    Google Scholar 

  • Mensah RK, Khan M (1997) Use of Medicago sativa (L.) interplantings/trap crops in the management of the green mirid, Creontiades dilutus (Stål) in commercial cotton in Australia. Int J Pest Manag 43:197–202

    Article  Google Scholar 

  • Natarajan K, Sundaramurthy VT (1988) Management of Bemisia tabaci in cotton system through host plants resistance. In: National symposium on integrated pest control- progress and perspectives. pp 112–115

    Google Scholar 

  • O’Dowd D (1979) Foliar nectar production and ant activity on a neo-tropical tree, Ochroma pyramidale. Oecologia 43:233–248

    Article  Google Scholar 

  • Peng RK, Christian K, Gibb K (1998) The effect of non-crop vegetation on the insect pests and their natural enemies in cashew (Anacardium occidentale L.) plantations. Plant Prot Q 13:16–20

    Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey R, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard cotton in the USA nearly promises versus today’s reality. Plant J 27:489–501

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (1961) Species diversity and insect population outbreaks. Ann Entomol Soc Am 54:76–86

    Article  Google Scholar 

  • Powell W (1986) Enhancing parasite activity within crops. In: Waage JK, Greathead D (eds) Insect parasitoids. London Academic Press, London, p 389

    Google Scholar 

  • Qaim M, de Janvry A (2005) Bt cotton and pesticide use in Argentina: economic and environmental effects. Environ Dev Econ 10:179–200

    Article  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  CAS  PubMed  Google Scholar 

  • Rands MRW (1985) Pesticide use on cereals and survival of grey partridge chicks: a field experiment. J Appl Ecol 22:49–54

    Article  Google Scholar 

  • Rao CN, Shivankar VJ, Singh S (2003) Secondary pest resurgence. Encycl Pest Manag 1:1–5

    Google Scholar 

  • Rico-Gray V (1993) Use of plant-derived food resources by ants in the dry tropical lowlands of coastal Veracruz, Mexico. Biotropica 25:301–315

    Article  Google Scholar 

  • Ripper WE (1956) Effect of pesticides on balance of arthropod populations. Annu Rev Entomol 1:403–408

    Article  CAS  Google Scholar 

  • Risch SJ, Andow D, Altieri MA (1983) Agroecosystem diversity and pest control: data, tentative conclusions, and new research directions. Environ Entomol 12(3):625–629

    Article  Google Scholar 

  • Ryszkowski L, Karg J, Margalit G, Paoletti MG, Zlotin R (1993) Above-ground insect biomass in agricultural landscapes of Europe. In: Bunce RG, Hl R, Paoletti MG (eds) Landscape ecology and agroecosystems. Lewis, Boca Raton, pp 71–82

    Google Scholar 

  • Schuster MF, Calderon M (1986) Interaction of host plant resistant genotypes and beneficial insects in cotton ecosystems. In: Boethel DJ, Eikenbary RD (eds) Interactions of plant resistance and parasitoids and predators of insects. Ellis Horwood Limited, Chichester, pp 84–97

    Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity. Am Nat 152(5):738–750

    Article  CAS  PubMed  Google Scholar 

  • Sisterson SM, Biggs WR, Olson C, Carrière Y, Dennehy JT, Bruce ET (2004) Arthropod abundance and diversity in Bt and non-Bt cotton fields. Environ Entomol 33(4):921–929

    Article  Google Scholar 

  • Sohi GS (1964) Pests of cotton. In: Entomology in India. Entomology society of India, pp 111–148

    Google Scholar 

  • Southwood TRE, Way MJ (1970) Ecological background to pest management. In: Rabb RL, Guthrie FE (eds) Concepts of pest management. North Carolina State University Press, Raleigh, pp 6–29

    Google Scholar 

  • Speight MR (1983) The potential of ecosystem management for pest control. Agric Ecosyst Environ 10:183–199

    Article  Google Scholar 

  • Stamps WT, Linit MJ (1998) Plant diversity and arthropod communities: implications for temperate agroforestry. Agrofor Syst 39:73–89

    Article  Google Scholar 

  • Stewart SD, Adamczyck JJ, Knighten KS, Davis FM (2001) Impact of Bt cotton expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of noctuid (Lepidoptera) larvae. J Econ Entomol 94:752–760

    Article  CAS  PubMed  Google Scholar 

  • Tew TE, MacDonald DW, Rands MRW (1992) Herbicide application affects microhabitat use by arable wood mice (Apodemus sylvaticus). J Appl Ecol 29:532–539

    Article  Google Scholar 

  • Theunissen J, Booji CJH, Lotz LAP (1995) Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomol Exp Appl 74:7–16

    Article  Google Scholar 

  • Thirtle C, Beyers L, Isma¨el Y, Piesse J (2003) Can GM-technologies help the poor? The impact of Bt cotton in Makhathini Flats, KwaZulu-Natal. World Dev 31:717–732

    Article  Google Scholar 

  • Topham M, Beardsley JW Jr (1975) Influence of nectar source plants on the New Guinea sugarcane weevil parasite, Lixophaga sphenophori (Villeneuve). Proc Hawaii Entomol Soc 22:145–155

    Google Scholar 

  • Torres BJ, Ruberson RJ (2005) Canopy- and ground-dwelling predatory arthropods in commercial Bt and non-Bt cotton fields. Patterns Mech Environ Entomol 34:1242–1256

    Google Scholar 

  • Torres JB, Ruberson JR (2007) Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields. Ann Appl Biol 150(1):27–39

    Article  Google Scholar 

  • Treacy MF, Benedict JH, Walmsley MH, Lopez JD, Morrison RK (1987) Parasitism of bollworm (Lepidoptera: Noctuidae) eggs on nectaried and nectariless cotton. Environ Entomol 16:420–423

    Article  Google Scholar 

  • University of California (1996) Integrated pest management for cotton in the western region of the United States. University of California, Division of Agriculture and Natural Resources, Oakland, Publication 3305

    Google Scholar 

  • Van Emden HF (1990) Plant diversity and natural enemy efficiency in agroecosystems. In: Mackauer M, Ehler LE, Roland J (eds) Critical issues in biological control. Intercept, Andover, p 330

    Google Scholar 

  • Van Emden HF, Williams GF (1974) Insect stability and diversity in agroecosystems. Annu Rev Entomol 19:455–475

    Article  Google Scholar 

  • Wade MR, Zalucki MP, Wratten SD, Robinson KA (2008) Conservation biological control of arthropods using artificial food sprays: current status and future challenges. Biol Control 45(2):185–199

    Article  Google Scholar 

  • Wang Z, Lin H, Huang J, Hu R, Rozelle S, Pray C (2009) Bt cotton in China: are secondary insect infestations offsetting the benefits in farmer fields? Agric Sci China 8:83–90

    Article  Google Scholar 

  • Way MJ (1966) The natural environment and integrated methods of pest control. J Appl Ecol 3:29–32

    Article  Google Scholar 

  • Way MJ, Heong KL (1994) The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice – a review. Bull Entomol Res 84:567–587

    Article  Google Scholar 

  • Wetzler RE, Risch SJ (1984) Experimental studies of beetle diffusion in simple and complex crop habitats. J Anim Ecol 53:1–9

    Article  Google Scholar 

  • Whitcomb WH, Bell K (1964) Predaceous insects, spiders, and mites of Arkansas cotton Þelds. Agric. Exp. Sta., Univ of Arkansas, Fayetteville, AR Bull pp 690

    Google Scholar 

  • White TCR (1984) The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90–105

    Article  Google Scholar 

  • Wratten SD, Van Emden HF (1995) Habitat management for enhanced activity of natural enemies of insect pests. In: Glen DM, Greaves MP, Anderson HM (eds) Ecology and integrated farming systems. Wiley, Chichester, p 329

    Google Scholar 

  • Xia J (1997) Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter) cropping systems in China; a simulation study. PhD diss. Landbouwuniversiteit, Wageningen, p 173

    Google Scholar 

  • Zhang DJ, Lu ZY, Liu JX, Li CL, Yang MS (2015) Diversity of arthropod community in transgenic poplar-cotton ecosystems. Genet Mol Res 14(4):15713–15729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Nagaraja T. and Raghava T. for select review and Prabhulinga T., Harish Badigere, Dr. Vishlesh Shankar Nagrare and Dr. V Chinna Babu Naik for lending select photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Chakravarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Chakravarthy, A.K., Naik, M., Madhu, T.N. (2016). Arthropods on Cotton: A Comparison Between Bt and Non-Bt Cotton. In: Chakravarthy, A., Sridhara, S. (eds) Economic and Ecological Significance of Arthropods in Diversified Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-10-1524-3_9

Download citation

Publish with us

Policies and ethics