Skip to main content

Soil Biodiversity and Arthropods: Role in Soil Fertility

  • Chapter
  • First Online:

Abstract

Healthy productive soils are essential to meet the food requirement of humans and animals. Arthropods have important role in maintaining soil fertility. The major contribution of arthropods to soil is through decomposition and humification of all organic matter. In the soil, arthropods function as litter transformers, ecosystem engineers, and pulverizers. As much as 20 % of total animal litter input is processed by the activity of collembolans alone. Arthropods also stimulate mineralization of nutrients in soil. Soil practices in cultivated ecosystems significantly alter arthropod community which in turn has significant effect on soil productivity. Arthropods facilitate soil processes. Hence, understanding soil arthropod communities will prove useful in developing management plans for both wild and cultivated ecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bagyaraj DJ (2011) Microbial biotechnology for sustainable agriculture, horticulture and forestry. NIPA Publishers, New Delhi

    Google Scholar 

  • Bagyaraj DJ (2014) Interaction between arbuscular mycorrhizal fungi and the soil organisms and their role in sustainable agriculture. In: Singh DP, Singh HB (eds) Trends in soil microbial ecology. Studium Press LLC, Houston, pp 257–280

    Google Scholar 

  • Bano K, Krishnamoorthy RV (1977) Changes in the composition of soils due to defecation by the millipede Jonespeltis splendidus (Verhoeff). Mysore J Agric Sci 11:561–566

    Google Scholar 

  • Bano K, Bagyaraj DJ, Krishnamoorthy RV (1976) Feeding activity of millipede Jonespeltis splendidus Verhoeff and soil humification. Proc Indian Acad Sci 82:1–11

    Google Scholar 

  • Bardgett RD, Usher MB, Hopkins DW (2005) Biological diversity and function in soils. Cambridge Univ Press, Cambridge, pp 172–188

    Book  Google Scholar 

  • Barrios E (2007) Soil biota ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Barron GL (1977) Topics in mycology No.1 The nematode destroying fungi. Canadian Biological Publications Ltd., Guelph, p 140

    Google Scholar 

  • Bengtsson J, Ahnstrom J, Weibull AC (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269

    Article  Google Scholar 

  • Bignell DE, Eggleton P (2000) Termites in ecosystems. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 363–387

    Chapter  Google Scholar 

  • Blower G (1951) A comparative study of the chilopod and diplopod cuticle. J Microsc Sci 92:141–161

    Google Scholar 

  • Blower JG (1956) Some relations between millipedes and the soil. In Proceedings of 6th Congres International de la Science du Sol, Paris III, pp. 169–176

    Google Scholar 

  • Boellstorff DL (2008) Estimated soil organic carbon change due to agricultural land management modifications in a semiarid cereal-growing region in Central Spain. J Arid Environ 73(3):389–392

    Article  Google Scholar 

  • Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. Wiley, New York, p 320

    Google Scholar 

  • Branner JC (1910) Geologic work of ants in tropical America. Bull Geol Soc Am 21:449–496

    Article  Google Scholar 

  • Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–89

    Article  Google Scholar 

  • Brussaard L, de Ruiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosys Environ 121(3):233–244

    Article  Google Scholar 

  • Chapman AD (2009) Numbers of living species in Australia and the world, 2nd edn. Australian Government, Department of the Environment, Water, Heritage and the Arts, Canberra, p 80

    Google Scholar 

  • Chew RM (1974) Consumers as regulators of ecosystems: an alternative to energetics. Ohio J Sci 74:359–370

    Google Scholar 

  • Christiansen K (1964) Bionomics of collembola. Annu Rev Entomol 9:147–148

    Article  Google Scholar 

  • Ciarkowska K, Niemyska-Łukaszuk J (2002) Microstructure of humus horizons of gypsic soils from the Niecka Nidziańska area (South Poland). Geoderma 106:319–329

    Article  CAS  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier Academic Press, Burlington, p 386

    Google Scholar 

  • Collins NM (1981) The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 51:389–399

    Article  Google Scholar 

  • Collins NM (1983) Termite populations and their role in litter removal in Malaysian rain forests. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell Scientific Publications, Oxford, pp 311–325

    Google Scholar 

  • Constanza R, d’Arge R, Groot R, Farbe S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neil RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Culliney TW (2013) Role of arthropods in maintaining soil fertility. Agriculture 3:629–659

    Article  Google Scholar 

  • Curry JP (1994) Grassland invertebrates: ecology, influence on soil fertility and effects on plant growth. Chapman & Hall, London, p 437

    Google Scholar 

  • Daane LL, Molina JAE, Borry EG, Sadowsky MJ (1996) Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria. Appl Environ Microbiol 62:515–521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms, with observations of their habits. Murry, London, p 326

    Book  Google Scholar 

  • Dash MC, Patra UC (1979) Worm cast production and nitrogen contribution to soil by a tropical earthworm population from a grass land site from Orissa India. Rev Ecol Biol Sol 16:79–83

    Google Scholar 

  • Decaens T, Jimenez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. Eur J Soil Biol 42:S23–S38

    Article  Google Scholar 

  • Dindal DL (1970) Feeding behavior of a terrestrial turbellarian Bipalium adventitium. Am Midl Nat 83:635–637

    Article  Google Scholar 

  • Edwards CA (1973) Biological aspects of the degradation and behavior of pesticides in soil. In Proceedings of 7th British insecticides and fungicide conference. pp. 811–823

    Google Scholar 

  • Edwards CA (1990) Symphyla. In: Dindal DL (ed) Soil biology guide. Wiley, New York, pp 891–910

    Google Scholar 

  • Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall Ltd, London, p 283

    Book  Google Scholar 

  • Eisenbeis G, Wichard W (1987) Atlas on the biology of soil arthropods. Springer-Verlag, Berlin, p 437

    Book  Google Scholar 

  • Elkins NZ, Sabol GV, Ward TJ, Whitford WG (1986) The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68:521–528

    Article  Google Scholar 

  • Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2, doi:10.1038/ncomms1257

  • Farji-Brener AG, Tadey M (2009) Contributions of leaf-cutting ants to soil fertility: causes and consequences. In: Lucero DP, Boggs JE (eds) Soil fertility. Nova Science Publishers, New York, pp 81–91

    Google Scholar 

  • Ferrar P, Watson JAL (1970) Termites associated with dung in Australia. J Aust Entomol Soc 9:100–102

    Article  Google Scholar 

  • Filser J (2002) The role of collembola in carbon and nitrogen cycling in soil. Pedobiologia 46:234–245

    Google Scholar 

  • Finlay R (2006) Identification of single species and communities. In: Luster J, Finlay R (eds) Handbook of methods used in Rhizosphere research. Swiss Federal Research Institute, Birmensdorf, pp 338–339

    Google Scholar 

  • Forel A (1910) Glanures myrmecologianes. Ann Soc Entomol Belg 54:6–31

    Google Scholar 

  • Frouz J, Jilková V (2008) The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol News 11:191–199

    Google Scholar 

  • Gardi C, Jeffrey S (2009) Soil biodiversity. Joint Research Center, European Commission, Luxembourg, p 27

    Google Scholar 

  • Gates GE (1961) Ecology of some earthworms with special reference to seasonal activity. Am Midl Nat 66:61–86

    Article  Google Scholar 

  • Ghaisas PS, Ranade DP (1981) Record of Japyx solifugus (Diplura) from Poona, UAS tech series – India, pp. 147–152

    Google Scholar 

  • Giribet G, Edgecombe GD (2012) Reevaluating the arthropod tree of life. Annu Rev Entomol 57:167–186

    Article  CAS  PubMed  Google Scholar 

  • Harley JL (1971) Fungi in ecosystems. J Appl Ecol 8(3):627–642

    Article  Google Scholar 

  • Harris RF, Chesters G, Allen ON (1966) Dynamics of soil aggregation. Adv Agron 18:107–169

    Article  CAS  Google Scholar 

  • Haygarth P, Ritz K (2009) The future of soils and land use in the UK: soil systems for the provision of land-based ecosystem services. Land Use Policy 26:S187–S197

    Article  Google Scholar 

  • Hole FD (1981) Effects of animals on soil. Geoderma 25:75–112

    Article  Google Scholar 

  • Hopkin SP (1997) Biology of the springtails (Insecta: collembola). Oxford University Press, Oxford, p 330

    Google Scholar 

  • Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, Oxford, p 233

    Google Scholar 

  • Jacot AP (1940) The fauna of the soil. Q Rev Biol 15:28–58

    Article  Google Scholar 

  • Jegen G (1920) DieBedeutng der Encytraeiden fiir die Humus bildung. Landwirtsch Fb Schweiz 34:55–71

    Google Scholar 

  • Jenny H (1980) The soil resource: origin and behavior. Springer-Verlag, New York, p 377

    Book  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Joris H, Caires E, Bini A, Scharr D, Haliski A (2013) Effects of soil acidity and water stress on corn and soybean performance under a no-till system. Plant and Soil 265:409–424

    Article  CAS  Google Scholar 

  • Kale RD, Krishnamoorthy RV (1979) Pesticidal effects of Sevin. R. (1-naphthyl-n-methyl carbamate) on the survivability and abundance of earthworm Pontoscolex corethrurus. Proc Indian Acad Sci 88B:391–396

    Article  CAS  Google Scholar 

  • Kale RD, Krishnamoorthy RV (1980) The calcium content of the body tissues and castings of the earthworm Pontoscolex corethrurus (Annelida: Oligochaeta). Pedobiologia 20:309–315

    CAS  Google Scholar 

  • Kale RD, Krishnamoorthy RV (1981) Litter preference in the earthworm, Lampito mauritii. Proc Ind Acad Sci 90:123–128

    Google Scholar 

  • Kambhampati S, Eggleton P (2000) Taxonomy and phylogeny of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Chapter  Google Scholar 

  • Kooyman C, Onck RFM (1987) The interactions between termite activity, agricultural practices and soil characteristics in Kisii District, Kenya. In Agricultural University Wageningen Papers 87-3, Agricultural University Wageningen: Wageningen, the Netherlands. pp. 1–120

    Google Scholar 

  • Kubiena WL (1955) Animal activity in soil as a decisive factor in establishment of humus forms. In: McE Kevan DK (ed) Soil zoology, vol 2. Butterworths, London, pp 73–82

    Google Scholar 

  • Kunhelt W (1976) Soil biology: with reference to the animal kingdom. Faber and Faber, London, p 483

    Google Scholar 

  • Lee KE, Wood TG (1961) Termites and soils. Academic, New York, p 251

    Google Scholar 

  • Léonard J, Rajot JL (2001) Influence of termites on runoff and infiltration: quantification and analysis. Geoderma 104:17–40

    Article  Google Scholar 

  • Lepage M, Morel G, Resplendino C (1974) Découverte de galeries de termites atteignant la nappe phréatique profonde dans le Nord du Sénégal. C R Acad Sci Sér D 278:1855–1858

    Google Scholar 

  • Lobry de Bruyn LA, Conacher AJ (1990) The role of termites and ants in soil modification: a review. Aust J Soil Res 28:55–93

    Google Scholar 

  • Loranger G, Ponge JF, Lavelle P (2003) Humus forms in two secondary semi-evergreen tropical forests. Eur J Soil Sci 54:17–24

    Article  CAS  Google Scholar 

  • Luster J, Göttlein A, Nowack B, Sarret G (2009) Sampling, defining, characterizing and modelling the rhizosphere – the soil science tool box. Plant and Soil 321:457–482

    Article  CAS  Google Scholar 

  • Lyford WH (1963) Importance of ants to brown podzolic soil genesis in New England. Harvard Forest Paper, Petersham

    Google Scholar 

  • Lynch JM, Bragg E (1985) Microorganisms and soil aggregate stability. Adv Soil Sci 2:133–171

    Article  Google Scholar 

  • Madge DS (1965) Leaf fall and litter disappearance in a tropical forest. Pedobiologia 5:273–288

    Google Scholar 

  • Maggenti AR (1981) Nematodes: development as plant parasites. Annu Rev Microbiol 35:135–154

    Article  CAS  PubMed  Google Scholar 

  • Mando A (1997) The impact of termites and mulch on the water balance of crusted Sahelian soil. Soil Technol 11:121–138

    Article  Google Scholar 

  • Mando A, Miedema R (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl Soil Ecol 6:241–249

    Article  Google Scholar 

  • Mando A, Stroosnijder L, Brussaard L (1996) Effects of termites on infiltration into crusted soil. Geoderma 74:107–113

    Article  Google Scholar 

  • Narayana Swamy BC, Nanjegowda D (1980) The Tardigrade Macrobiotus Sp. predaceous on plant parasitic Nematodes. Soil Biol Ecol News lett 1:9

    Google Scholar 

  • Nielsen CO, Christensen B (1959) The enchytracidae, critical revision and taxonomy of European species. Natur Jutlandica 8–9:1–160

    Google Scholar 

  • Norton DC (1978) Ecology of plant-parasitic nematode. Wiley, New York, p 268

    Google Scholar 

  • Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the astigmata. In: Houck MA (ed) Mites: ecological and evolutionary analyses of life-history patterns. Chapman & Hall, New York, pp 99–135

    Chapter  Google Scholar 

  • Norton RA, Behan-Pelletier VM (2009) Suborder oribatida. In: Krantz GW, Walter DE (eds) A manual of acarology. Texas Tech University Press, Lubbock, pp 430–564

    Google Scholar 

  • Nutting WL, Haverty MI, LaFage (1987) Physical and chemical alteration of soil by two subterranean termite species in Sonoran desert grassland. J Arid Environ 12:233–239

    Google Scholar 

  • Oades JM (1993) The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56:377–400

    Article  Google Scholar 

  • Overgaard Nielsen C, Christensen B (1959) The enchytraeidae – critical revision and taxonomy of European species. Naturhistorisk Museum, Aarhus

    Google Scholar 

  • Patel HK, Patel RM (1959) Preliminary observations on the control of earthworms by soapnut (Sapindus laurifolius Vaw) extract. Indian J Entomol 21:251–255

    Google Scholar 

  • Paton TR, Humphreys GS, Mitchell PB (1995) Soils: a new global view. Yale University Press, London, p 213

    Google Scholar 

  • Pavan M (1962) La defence biologique des forest en italic avecless fourmis du groupe Formica rufa Symp. Genetica et biologica italic. Atti IV Congresso UIEIS Pavia 11:1–25

    Google Scholar 

  • Pawluk S (1987) Faunal micromorphological features in moder humus of some western Canadian soils. Geoderma 40:3–16

    Article  Google Scholar 

  • Petal J (1978) The role of ants in ecosystems. In: Brian MV (ed) Production ecology of ants and termites. Cambridge University Press, Cambridge, UK, pp 293–325

    Google Scholar 

  • Petersen H (1994) A review of collembolan ecology in ecosystem context. Acta Zool Fenn 195:111–118

    Google Scholar 

  • Petersen H, Luxton M (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39:288–388

    Article  Google Scholar 

  • Pimentel D (1997) Techniques for reducing pesticides: environmental and economic benefits. Wiley, Chichester

    Google Scholar 

  • Powlson DS, Bhogal A, Chambers BJ, Coleman K, Macdonald AJ, Goulding KWT, Whitmore AP (2012) The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agric Ecosyst Environ 146:23–33

    Article  Google Scholar 

  • Prabhoo NR (1972) South Indian protura. Rev Ecol Biol Sol 9:711–718

    Google Scholar 

  • Rajagopal D, Veeresh GK (1981) Thermophiles and teritariophiles of Odontotermes wallonensis (Isoptera : Termitidae) in Karnataka, India. Colemania 1(2):129–130

    Google Scholar 

  • Raw F (1967) Arthropods (except Acari and collembola). In: Burges A, Raw F (eds) Soil biology. Academic, London, pp 323–362

    Chapter  Google Scholar 

  • Reichle DE (1977) The role of soil invertebrates in nutrient cycling. In: Lohm U, Persson T (eds) Soil organisms as components of ecosystems. Swedish Natural Science Research Council, Stockholm, pp 145–156

    Google Scholar 

  • Retallack GJ, Feakes CR (1987) Trace fossil evidence for late Ordovician animals on land. Science 235:61–63

    Article  CAS  PubMed  Google Scholar 

  • Richards PJ (2009) Aphaenogaster ants as bioturbators: impacts on soil and slope processes. Earth Sci Rev 96:92–106

    Article  CAS  Google Scholar 

  • Romell LG (1935) An example of myriapods as mull formers. Ecology 16(1):67–71

    Article  Google Scholar 

  • Rusek J (1985) Die bodenbildende Funktion von Collembolen und Acarina. Pedobiologia 15:299–308

    Google Scholar 

  • Samway MJ (1994) Insect conservation biology. Chapman and Hall, London, p 358

    Google Scholar 

  • Sayre RM (1971) Biotic influence in soil environment. In: Zukerman BM, Mai WF, Rhode RA (eds) Plant parasitic nematodes, vol I. Academic, New York, pp 235–256

    Google Scholar 

  • Schils R, Kuikman P, Liski J, van Oijen M, Smith P, Webb J, Alm J, Somogyi Z, van den Akker J, Billett M, Emmett B, Evans C, Lindner M, Palosuo T, Bellamy P, Alm J, Jandl R, Hiederer R (2008) Review of existing information on the interrelations between soil and climate change. Altera, Wageningen, p 205

    Google Scholar 

  • Schmalfuss H (2003) World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttg Beitr Naturkunde Ser A (Biol) 654:1–341

    Google Scholar 

  • Seifert EK, Bever JD, Maron JL (2009) Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 90(4):1055–1062

    Article  PubMed  Google Scholar 

  • Senapati BK, Dash MC, Rana AK, Panda BK (1980) Observation on the effect of earthworm in the decomposition process in soil under laboratory conditions. Comput Physiol Ecol 5:140–142

    Google Scholar 

  • Sierwald P, Bond JE (2007) Current status of the myriapod class Diplopoda (millipedes): taxonomic diversity and phylogeny. Annu Rev Entomol 52:401–420

    Article  CAS  PubMed  Google Scholar 

  • Stirling GR, Mankau R (1978) Dactylella oviparasitica, a new fungal parasite of Meloidogyne eggs. Mycologia 70:771–783

    Article  Google Scholar 

  • Stork NE, Eggleton P (1992) Invertebrates as determinants and indicators of soil quality. Am J Altern Agric 7:38–47

    Article  Google Scholar 

  • Striganova BR (1975) Dispersion patterns of diplopods and their activity in the litter decomposition in the Carpathian foothills. In: Vaněk J (ed) Progress in soil zoology. Academia, Prague, pp 167–173

    Chapter  Google Scholar 

  • Sutton S (1980) Woodlice. Pergamon Press, Oxford, p 144

    Google Scholar 

  • Szucsich N, Scheller U (2011) Symphyla. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology: the myriapoda, vol 1. Koninklijke Brill NV, Leiden, pp 445–466

    Chapter  Google Scholar 

  • Tembe VB, Dubash PJ (1961) The earthworms: a review. J Bombay Nat Hist Soc 58:171–201

    Google Scholar 

  • Timonin MI (1961) The interaction of plant pathogen and Scaptocoris talpa Champ. Can J Bot 39:695–703

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    Article  CAS  Google Scholar 

  • Turbé A, De Toni A, Benito P, Lavelle P, Ruiz N, Van der Putten WH, Labouze E, Mudgal S (2010) Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD and NIOO Report for European Commission (DG Environment), pp. 251

    Google Scholar 

  • Veeresh GK, Rajgopal D, Mallik B (1982) Termites and fertility status of soil. VII International Colloquium of soil Zoology, 30th Aug–2nd Sept Louvain-La-Neuve, Belgium

    Google Scholar 

  • Wallwork JA (1970) Ecology of soil animals. McGraw Hill, London, p 283

    Google Scholar 

  • Wallwork JA (1982) Desert soil fauna. Prarger Publishers, New York, p 296

    Google Scholar 

  • Wallwork JA (1983) Oribatids in forest ecosystems. Annu Rev Entomol 28:109–130

    Article  Google Scholar 

  • Wheeler WM (1910) Ants: their structure, development and behavior. Columbia University Press, New York, p 663

    Google Scholar 

  • Whitford WG (1991) Subterranean termites and long-term productivity of desert rangelands. Sociobiology 19:235–243

    Google Scholar 

  • Whitford WG, Freckman DW, Parker LW, Schaefer D, Santos PF, Steinberger Y (1983) The contributions of soil fauna to nutrient cycles in desert systems. In: Lebrun P, André HM, de Medts A, Grégoire-Wibo C, Wauthy G (eds) New trends in soil biology. Imprimerie J Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, pp 49–59

    Google Scholar 

  • Wilkinson MT, Richards PJ, Humphrey GS (2009) Breaking ground, pedological geological and ecological implications of soil bioturbation. Earth Sci Rev 97:257–272

    Article  Google Scholar 

  • Winoto Suatmadji R (1969) Studies on effect of Tagetes species on plant-parasitic nematodes. Veenman and Zonen, NV, Wageningen

    Google Scholar 

  • Yair A, Rutin J (1981) Some aspects of the regional variation in the amount of available sediment produced by isopods and porcupines, northern Negev, Israel. Earth Surf Proc Land 6:221–234

    Article  Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Nethravathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Bagyaraj, D.J., Nethravathi, C.J., Nitin, K.S. (2016). Soil Biodiversity and Arthropods: Role in Soil Fertility. In: Chakravarthy, A., Sridhara, S. (eds) Economic and Ecological Significance of Arthropods in Diversified Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-10-1524-3_2

Download citation

Publish with us

Policies and ethics