Skip to main content

Arthropod Diversity and Management in Legume-Based Cropping Systems in the Tropics

  • Chapter
  • First Online:
Economic and Ecological Significance of Arthropods in Diversified Ecosystems
  • 1137 Accesses

Abstract

Despite the wealth of arthropod diversity in legumes, most species are not considered economically important. In this chapter, information on various arthropod communities associated with leguminous crop-based agroecosystems/agroforestry systems as pests (sucking and chewing herbivores) and beneficials like pollinators, natural enemies like parasites and predators, and their ecological roles in these cultivated ecosystems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (2012) Pollination biology: biodiversity conservation and agricultural production. Springer, Dordrecht, ISBN 978-94-007-1941-5

    Book  Google Scholar 

  • Altieri MA, Letourneau DK (1982) Vegetation management and biological control in agroecosystems. Crop Prot 1:405–430

    Article  Google Scholar 

  • Andow DA (1988) Management of weeds for insect manipulation in agroecosystems. In: Altieri MA, Liebman M (eds) Weed management in agroecosystems: ecological approaches. CRC Press, Boca Raton, pp 265–301

    Google Scholar 

  • Annan IB, Ampong-Nyarko K, Tingey WM, Schaefers GA (1997) Interactions of fertilizer, cultivar selection, and infestation by cowpea aphid (Aphididae) on growth and yield of cowpeas. Int J Pest Manag 43(4):307–312

    Article  Google Scholar 

  • Arunin A (1978) Pests of soybean and their control in Thailand. In: Singh SR, Van Emden HF, Ajibola Taylor T (eds) Pests of grain legumes: ecology and control. Academic, London, pp 43–46

    Google Scholar 

  • Arvind K, Akhilesh K (2015) Effect of abiotic and biotic factors on incidence of pests and predator in cowpea [Vigna unguiculata (L.) Walp.]. Legum Res 38(1):121–125

    Article  Google Scholar 

  • Asiwe JAN (2009) The impact of phosphate fertilizer as a pest management tactic in four cowpea varieties. Afr J Biotechnol 8:7182–7186

    Google Scholar 

  • Aslam M (2004) Pest status of stored chickpea beetle, Callosobruchus chinensis L. on chickpea. J Entomol 1(1):28–33

    Article  Google Scholar 

  • Babasaheb BF, Ankush LK, Kumar M (2012) Will climate change pose serious threat to crop pest management: a critical review? Inter J Sci Res Publ 2(11):1–14

    Google Scholar 

  • Bhalla S, Kapur ML, Gupta K, Lal B, Khetarpal RK (2006) Checklist of bruchids associated with seeds of different plant genera. NBPGR, New Delhi, p 38

    Google Scholar 

  • Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408

    Article  Google Scholar 

  • Bisane KD, Borkar SL, Lande GK, Bhalkare SK (2008) Parasitization of Helicoverpa armigera (Hubner) on pigeon pea. J Biol Control 22(2):455–461

    Google Scholar 

  • Brown HB (1935) Effect of soybean on corn-yields Louisiana. Exp Agric 265:31–31

    Google Scholar 

  • Cardinale BJ, Weis JJ, Forbes AE, Tilmon KJ, Ives AR (2006) Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator–prey system. J Anim Ecol 75:497–505

    Article  PubMed  Google Scholar 

  • Castro MS, Oliveira CM (1998) Abelhas visitantes do tamarindo Tamarindus indica L. em duas áreas da Bahia: caatinga (Milagres) e sub-úmida (Conceição do Almeida). Anais do XVII Congresso Brasileiro de Entomologia; Rio de Janeiro; Brasil. Rio de Janeiro

    Google Scholar 

  • Chandrashekar K, Om Gupta, Suhas Yelshetty, Sharma OP, Someshwar Bhagat, Chattopadhyay C, Mukesh Sehgal, Arpana Kumari, Amaresan N, Sushil SN, Sinha AK, Ram Asre, Kapoor KS, Satyagopal K, Jeyakumar P (2014) Integrated pest management for chickpea, pp 43

    Google Scholar 

  • Chaneton EJ, Omacini M (2007) Bottom-up cascades induced by fungal endophytes in multitrophic systems. Ecological communities. In: Ohgushi T, Craig TP, Price PW (eds) Plant mediation in indirect interaction webs. Cambridge University Press, Cambridge, UK, pp 164–187

    Google Scholar 

  • Coviella C, Trumble JT (1999) Elevated atmospheric CO2 and insect-plant interactions: implications for insect conservation. Conserv Biol 13:700–712

    Article  Google Scholar 

  • Dahiya SS, Chauhan YS, Johansen C, Shanower TG (1999) Adjusting pigeon pea sowing time to manage pod borer infestation. Int Chickpea Pigeonpea Newsl 6:44–45

    Google Scholar 

  • Degri MM, Mailafiya DM, Mshelia JS (2014) Effect of intercropping pattern on stem borer infestation in pearl millet (Pennisetum glaucum L.) grown in the Nigerian Sudan Savannah. Adv Entomol 2:81–86

    Article  Google Scholar 

  • Denno RF, Finke DL, Langellotto GA (2005) Direct and indirect effects of vegetation structure and habitat complexity on predator–prey and predator–predator interactions. In: Barbosa P, Castellanos I (eds) Ecology of predator–prey interactions. Oxford University Press, Oxford, pp 211–239

    Google Scholar 

  • Deodikar GB, Suryanarayana MC (1977) Pollination in the service of increasing farm production in India. In: Nair PKK (ed) Advance in pollen-spore research, vol II. Maharashtra Association for the Cultivation of Science, New Delhi, pp 60–82

    Google Scholar 

  • Dhaliwal GS, Arora R (1994) Components of insect pest management: a critique. In: Dhaliwal GS, Arora R (eds) Trends in agricultural insect pest management. Commonwealth Publishers, New Delhi, pp 1–55

    Google Scholar 

  • Dhaliwal GS, Arora R (1996) Principles of insect pest management. National Agricultural Technology Information Centre, Ludhiana, p 374

    Google Scholar 

  • Diallo BO, Ouedraogo M, Chevallier M-H, Joly HI, Hossaert-Mckey M, Mckey D (2014) Potential pollinators of Tamarindus indica L. (Caesalpinioideae) in Sudanian region of Burkina Faso. Afr J Plant Sci 8(12):528–536

    Google Scholar 

  • Dudt JF, Shure DJ (1994) The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75:86–98

    Article  Google Scholar 

  • Duraimurugan P, Tyagi K (2014) Pest spectra, succession and its yield losses in mung bean and urad bean under changing climatic scenario. Legum Res 37(2):212–222

    Article  Google Scholar 

  • FAO (2007) Green beans integrated pest management: an ecological guide. FAO Regional Vegetable IPM Programme, pp 82

    Google Scholar 

  • Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581

    Article  Google Scholar 

  • Finkes LK, Cady AB, Mulroy JC, Clay K, Rudgers JA (2006) Plant – fungus mutualism affects spider composition in successional fields. Ecol Lett 9:347–356

    Article  PubMed  Google Scholar 

  • Fonseca CR, Prado PI, Almeida-Neto M, Kubota U, Lewinsohn TM (2005) Flower-heads, herbivores, and their parasitoids: food web structure along a fertility gradient. Ecol Entomol 30:36–46

    Article  Google Scholar 

  • Forkner RE, Hunter MD (2000) What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81:1588–1600

    Article  Google Scholar 

  • Forkner RE, Marquis RJ, Lill JT (2004) Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol Entomol 29:174–187

    Article  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • Grixti JC, Wong LT, Cameron SA, Favret C (2009) Decline of bumble bees (Bombus) in the North American Midwest. Biol Cons 142:75–84

    Article  Google Scholar 

  • Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops MH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158:17–35

    Article  CAS  PubMed  Google Scholar 

  • Harper AM (1988) Insects and mites on Alfalfa in Alberta, Technical Bulletin 1988-3E. Research Branch, Agriculture Canada, Ottawa, p 38

    Google Scholar 

  • Hartley SE, Gange AC (2009) Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annu Rev Entomol 54:323–342

    Article  CAS  PubMed  Google Scholar 

  • Hugar SV (2012) Tritrophic interaction between pigeonpea genotypes, Helicoverpa armigera (Hübner) and natural enemies. PhD thesis, University of Agricultural Sciences, Dharwad, India

    Google Scholar 

  • Hunter MD, Price PW (1992) Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural community. Ecology 73:724–732

    Google Scholar 

  • ICRISAT (1992) Medium term plan. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India.

    Google Scholar 

  • Ives AR, Kareiva P, Perry R (1993) Response of a predator to variation in prey density at 3 hierarchical scales – lady beetles feeding on aphids. Ecology 74:1929–1938

    Article  Google Scholar 

  • Jani AJ, Faeth SH, Gardner D (2010) Asexual endophytes and associated alkaloids alter arthropod community structure and increase herbivore abundances on a native grass. Ecol Lett 13:106–117

    Article  PubMed  Google Scholar 

  • Jhansi Rani B, Sridhar V (2004) Record of arthropod pests on velvet bean, Mucuna pruriens var. utilis under Bangalore conditions. J Med Arom Plant Sci 26(3):505–506

    Google Scholar 

  • Kabir AKMF (1978) Pests of grain legumes and their control in Bangladesh. In: Singh SR, van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic, London

    Google Scholar 

  • Katayama N, Zhang Z, Ohgushi T (2011) Community-wide effects of below-ground rhizobia on above-ground arthropods. Ecol Entomol 36:43–51

    Article  Google Scholar 

  • Kavita G, Bhalla S, Manju LK, Beche L, Charan Singh (2012) Insects and mites of quarantine significance in grain legumes. In: Chalam VC, Bhalla S, Singh B, Rajan (eds) Potential quarantine pests for India in grain legume. National Bureau of Plant Genetic Resources, New Delhi, pp 1–108

    Google Scholar 

  • Kennedy GG, Margolies DC (1985) Mobile arthropod pests: management in diversified agroecosystems. Bull Entomol SOCA 31(3):21–27

    Google Scholar 

  • Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293

    Article  Google Scholar 

  • Knowles RP (1943) The role of insects, weather conditions, and plant character in seed setting of Alfalfa. Sci Agric 24:29–50

    Google Scholar 

  • Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K (2000) Numerical responses of different trophic groups of invertebrates to manipulation of plant diversity in grasslands. Oecologia 125:271–282

    Article  CAS  PubMed  Google Scholar 

  • Koricheva J, Gange AC, Jones T (2009) Effects of mycorrhizal fungi on insect herbivores: a meta-analysis. Ecology 90:2088–2097

    Article  PubMed  Google Scholar 

  • Lal SS (1987) Insect pests of mung, urad, cowpea and pea and their management. In: Rao MV, Sithanantham S (eds) Plant protection in field crops. Plant Protection Association of India, Hyderabad, pp 185–201

    Google Scholar 

  • Langellotto GA, Denno RF (2004) Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139(1):1–10

    Article  PubMed  Google Scholar 

  • Larson KC, Berry RE (1984) Influence of peppermint phenolics and monoterpenes on two spotted spider mite (Acari: Tetranychidae). Environ Entomol 13:282–285

    Article  CAS  Google Scholar 

  • López CB, Blanco-Moreno JM, Pérez N, Pujade-Villar J, Ventura D, Oliva F, Sans FX (2010) A functional approach to assessing plant–arthropod interaction in winter wheat. Agric Ecosyst Environ 137:288–293

    Article  Google Scholar 

  • Lu YC, Watkins KB, Teasdale JR, Abdul-Baki AA (2000) Cover crops in sustainable food production. Food Rev Int 16:121–157

    Article  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U, Masters G (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Martin RC (1990) Intercropping corn and soybean for high-protein silage in a cool temperate region. PhD thesis, McGill University, Montreal, Quebec, pp 185

    Google Scholar 

  • Mattson WJ, Haack RA (1987) The role of drought in outbreaks of plant-eating insects. Biogeosciences 37:110–118

    Article  Google Scholar 

  • Mattson WJ, Scriber JM (1987) Feeding ecology of insect folivores of woody plants: water, nitrogen, fiber, and mineral considerations. In: Slansky F Jr, Rodriguez JG (eds) The nutritional ecology of insects, mites and spiders. Wiley, New York, pp 105–146

    Google Scholar 

  • Moreby SJ, Aebischer NJ, Southway SE, Sotherton NW (1994) A comparison of the flora and arthropod fauna of organically and conventionally grown winter-wheat in southern England. Ann Appl Biol 125:13–27

    Article  Google Scholar 

  • Murdoch WW, Evans FC, Peterson CH (1972) Diversity and pattern in plants and insects. Ecology 53:819–829

    Article  Google Scholar 

  • Nagarajan B, Nicodemus A, Mandal AK, Verma RK, Gireesan K, Mahadevan NP (1997) Phenology and controlled pollination study in tamarind. Silvae Genet 47:237–241

    Google Scholar 

  • Nakamura T, Ogawa H, Maripi DK, Uematsu M (2006) Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and Western North Pacific. Atmos Environ 40:7259–7264

    Article  CAS  Google Scholar 

  • Norris RF, Kogan M (2000) Interaction between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sci 48:94–158

    Article  CAS  Google Scholar 

  • Ofuya TI, Fayape OE (1999) Evaluation of cashew nut shell liquid and powder for the control of Callosobruchus maculatus (Fabricus) (Coleoptera: Bruchidae) infesting stored seeds of cowpea, Vigna unguiculata (L.) Walpers. Appl Trop Agric 4:72–77

    Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Muller CB (2001) Symbiotic fungal endophytes control insect host – parasite interaction webs. Nature 409:78–81

    Article  CAS  PubMed  Google Scholar 

  • Oyewale RO, Bamaiyi LJ (2013) Management of cowpea insect pests. Sch Acad J Biosci 1:217–226

    Google Scholar 

  • Ozawa R, Nishimura O, Yazawa S, Muroi A, Takabayashi J, Arimura G (2012) Temperature-dependent, behavioural, and transcriptional variability of a tritrophic interaction consisting of bean, herbivorous mite, and predator. Mol Ecol 21(22):5624–5635

    Article  PubMed  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Partap U (1997) Bee flora of the Hindu Kush-Himalayas: inventory and management. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, p 297

    Google Scholar 

  • Parvatha Reddy (2014) Leguminous vegetable crops. In: Parvatha Reddy (ed) Biointensive integrated pest management in horticultural ecosystems, vol XVI. Springer, pp 277, ISBN 978-81-322-1844-9

    Google Scholar 

  • Peck O, Bolton JL (1946) Alfalfa seed production in Northern Saskatchewan as affected by bees, with a report on means of increasing the populations of native bees. Sci Agric 26:388–418

    Google Scholar 

  • Plowright RC, Laverty TM (1984) The ecology and sociobiology of bumble bees. Annu Rev Entomol 29:175–199

    Article  Google Scholar 

  • Radhamani A, Nicodemus A, Narajan B, Subramanian KN (1993) Reproductive biology and breeding system studies in Tamarindus indica L. In: Veeresh GK, Shaanker RU, Ganeshaiah KN (eds) Pollination in tropics. International Union for the Study of Social Insects, India Chapter, Bangalore, pp 33–35

    Google Scholar 

  • Rao MR (1982) Legume production in traditional and improved cropping systems in India. In: Symposium on grain legumes production, Chiang Mai, Thailand, November 1980

    Google Scholar 

  • Rao MS, Manimanjari D, Rama Rao AC, Swathi P, Maheswari M (2014) Effect of climate change on Spodoptera litura Fab. on peanut: a life table approach. Crop Prot 66:98–106

    Article  Google Scholar 

  • Reinhardt JF (1952) Some responses of honey bees to alfalfa. Am Nat 86:257–275

    Article  Google Scholar 

  • Richards KW (1989) Alfalfa leafcutter bee management in Western Canada. Agriculture Canada, Ottawa, Publication 1495/E

    Google Scholar 

  • Rose RI, Chiang HS, Harnoto I (1978) Pests of grain legumes and their control in Taiwan. In: Singh SR, van Emden HF, Taylor TA (eds) Pests of grain legumes: ecology and control. Academic, London, pp 67–71

    Google Scholar 

  • Rudgers JA, Clay K (2008) An invasive plant – fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840

    Article  PubMed  Google Scholar 

  • Sastrawinata SE (1976) Nutrient uptake, insect, disease, labor use, and productivity characteristics of selected traditional inter cropping patterns which together affect their continued use by farmers. Ph.D. Thesis, University of Philippines, p 130

    Google Scholar 

  • Satpathy S, Shivalingaswamy TM, Akhilesh K, Rai AB, Rai M (2009) Efficacy of biopesticides and new insecticides for management of cowpea pod borer, Maruca vitrata, Symposium on international conference on Grain Legumes: Quality improvement value addition and trade. IIPR, Kanpur, pp 292–293

    Google Scholar 

  • Saxena NP, Johansen C, Saxena MC, Silim SN (1993) Selection for drought and salinity tolerance in cool – season food legumes. In: Singh KB, Saxena MC (eds) Breeding for tolerance in cool season food legumes. Wiley, Chichester, pp 245–270

    Google Scholar 

  • Schrire BD, Lavin M, Lewis GP (2005) Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biol Skr 55:375–422

    Google Scholar 

  • Sehgal VK, Ujagir R (1988) Insect and pest management of mungbean in India. Mung bean: proceedings of the Second International Symposium. Asian Vegetable Research and Development Center, Shanhua, pp 315–328

    Google Scholar 

  • Sekamatte BM, Ogenga-Latigo M, Russell-Smith A (2003) Effects of maize-legume intercrops on termite damage to maize, activity of predatory ants and maize yields in Uganda. Crop Prot 22:87–93

    Article  Google Scholar 

  • Seran TH, Brintha I (2010) Review on maize based intercropping. J Agron 9(3):135–145

    Article  Google Scholar 

  • Sharma HC (ed) (2005) Heliothis/helicoverpa management: emerging trends and strategies for future research. Oxford & IBH, and Science Publishers, USA, New Delhi, p 469

    Google Scholar 

  • Sharma HC (2010) Global warming and climate change: impact on arthropod biodiversity, pest management and food security. In: National symposium on perspectives and challenges of integrated pest management for sustainable agriculture. Solan, India

    Google Scholar 

  • Sharma OP, Gopali JB, Suhas Yelshetty OM, BaFmbawale DK, Garg BB, Bhosle (2010) Pests of Pigeon pea and their management. NCIPM, LBS Building, IARI Campus, New Delhi

    Google Scholar 

  • Sharma OP, Bambawale OM, Gopali JB, Someshwar B, Suhas Y, Singh SK, Rajesh A, Om Pal S (2011) Field guide-mung bean and urad bean. National Centre for Integrated Pest Management (Indian Council of Agricultural Research) LBS Building, IARI Campus, New Delhi

    Google Scholar 

  • Sharma S, Upadhyaya HD, Roorkiwal M, Varshney RK, Gowda CLL (2013) Chickpea. In: Singh M, Upadhyaya HD, Bisht IS (eds) Genetic and genomic resources of grain legume improvement. Elsevier, London, pp 81–104

    Chapter  Google Scholar 

  • Sharma AN, Gupta GK, Verma RK, Sharma OP, Someshwar Bhagat, Amaresan N, Saini MR, Chattopadhyay C, Sushil SN, Ram Asre, Kapoor KS, Satyagopal K, Jeyakumar P (2014) Integrated pest management for soybean, p 41

    Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental test of the dependence of arthropod diversity on plant diversity. Am Nat 152:738–750

    Article  CAS  PubMed  Google Scholar 

  • Singh KR, Jackai LEN (1985) Insect pests of cowpeas in Africa: their life cycle, economic importance and potential for control. In: Singh SR, Rachie KO (eds) Cowpea research, production and utilisation. Wiley, London, pp 217–231

    Google Scholar 

  • Singh S, Thirumalaisamy PP, Harish G, Datta Ram, Sushil SN, Sinha AK, Ram Asre, Kapoor KS, Satyagopal K, Jeyakumar P, Ajanta Birah, Sharma OP, Someshwar Bhagat, Verma PV, Sunil Kumar, Chattopadhyay C, Yadav MS (2014) Integrated pest management package for groundnut, p 49

    Google Scholar 

  • Southgate BJ (1978) The importance of Bruchidae as pests of grain legumes, their distribution and control. In: Pests of grain legumes: ecol control, pp 219–229

    Google Scholar 

  • Sridhar V, Reddy PVR (2013) Use of degree days and plant phenology: a reliable tool for predicting insect pest activity under climate change conditions. In: Singh HP, Rao NKS, Shivashankar KS (eds) Climate resilient horticulture: adaptation and mitigation strategies. Springer Publisher, New Delhi, pp 287–294

    Chapter  Google Scholar 

  • Staley JT, Johnson SN (2008) Climate change impacts on root herbivores. In: Johnson SN, Murray PJ (eds) Root feeders: an ecosystem perspective. CABI, Wallingford, pp 192–213

    Chapter  Google Scholar 

  • Suba Singhe SMC, Fellowes RW (1978) Recent trends in grain legume pest research in Sri Lanka. In: Singh SR, van Emden HF, Taylor TA (eds) Pests in grain legumes. Ecology and control. Academic, London, pp 37–41

    Google Scholar 

  • Swaminathan R, Singh K, Nepalia V (2012) Insect pests of green gram Vigna radiata (L.) Wilczek and their management. INTECH 51(1):978–953

    Google Scholar 

  • Trumble JT, Butler CD (2009) Climate change will exacerbate California’s insect pest problem. Calif Agric 63(2):73

    Article  Google Scholar 

  • Udayagiri S, Wadhi SR (1989) Catalogue of Bruchidae. Mem. Amer. Ent. Inst (45):300

    Google Scholar 

  • Upadhyay SK, Singh RP, Rizvi SMA (1997) Impact of bee pollination on the yield components of early variety of pigeon pea. National symposium on management of biotic and abiotic stresses in pulse crops. IIPR, Kanpur

    Google Scholar 

  • Utsumi S, Ohgushi T (2009) Community-wide impacts of herbivore-induced plant regrowth on arthropods in a multi-willow species system. Oikos 118(12):1805–1815

    Article  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–301

    Article  PubMed  Google Scholar 

  • Van Emden HF, Ball SL, Rao MR (1988) Pest, disease and weed problems in pea lentil and faba bean and chickpea. In: World crops: cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 519–534

    Google Scholar 

  • Waddington KD, Herbst LH (1987) Body size and the functional length of the proboscis of honey bees. Fla Entomol 70:124–128

    Article  Google Scholar 

  • Wardle DA, Nicholson KS, Bonner KI, Yeates GW (1999) Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol Biochem 31:1691–1706

    Article  CAS  Google Scholar 

  • Weigand S, Lateef SS, El Din Sharaf N, Mahmoud SF, Ahmed K, Ali K (1994) Integrated control of insect pests of cool season food legumes. In: Muehlbauer EJ, Kaiser WJ (eds) Expanding the production and use of cool season food legumes. Kluwer Academic Publishers, Dordrecht, pp 679–694

    Chapter  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, New York, pp 397–343

    Book  Google Scholar 

  • Whiteman JA, Ranga Rao GV (1993) A groundnut insect identification handbook for India, Information Bulletin No. 39. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, India p 64

    Google Scholar 

  • Willey RW, Natarajan M, Reddy MS, Rao MR, Nambiar PTCM, Kannaiyan J, Bhatnagar VS (1983) Intercropping studies with annual crops. In: Nugent J, O’Connor M (eds) Better crop for food. Pitman Co, London

    Google Scholar 

  • Williams IH (1977) Behaviour of insects foraging on pigeon pea Cajanus cajan (L.) Millsp. in India. Trop Agric (Trinidad) 54(4):353–363

    Google Scholar 

  • Woodcock BA, Savage J, Bullock JM, Nowakoski M, Orr R, Tallowin JRB, Pywell RF (2014) Enhancing floral resources for pollinators in productive agricultural grasslands. Biol Conserv 171:44–51

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sridhar, V., Vinesh, L.S. (2016). Arthropod Diversity and Management in Legume-Based Cropping Systems in the Tropics. In: Chakravarthy, A., Sridhara, S. (eds) Economic and Ecological Significance of Arthropods in Diversified Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-10-1524-3_11

Download citation

Publish with us

Policies and ethics