Skip to main content

Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research

  • Chapter
  • First Online:
Translational Biomedical Informatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 939))

Abstract

Microbes are ubiquitous on our planet, and it is well known that the total number of microbial cells on earth is huge. These organisms usually live in communities, and each of these communities has a different taxonomical structure. As such, microbial communities would serve as the largest reservoir of genes and genetic functions for a vast number of applications in “bio”-related disciplines, especially in biomedicine. Human microbiome is the area in which the relationships between ourselves as hosts and our microbiomes have been examined.

In this chapter, we have first reviewed the researches in microbes on community, population and single-cell levels in general. Then we have focused on the effects of recent metagenomics and single-cell advances on human microbiome research, as well as their effects on translational biomedical research. We have also foreseen that with the advancement of big-data analysis techniques, deeper understanding of human microbiome, as well as its broader applications, could be realized.

*These authors equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackerman J. The ultimate social network. Sci Am. 2012;306(6):36–43.

    Article  PubMed  Google Scholar 

  2. Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13(8):497–508.

    Article  CAS  PubMed  Google Scholar 

  3. Amann R, et al. In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol. 1996;178(12):3496–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakhshinejad B, Sadeghizadeh M. Bacteriophages and their applications in the diagnosis and treatment of hepatitis B virus infection. World J Gastroenterol. 2014;20(33):11671–83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Biasucci G, et al. Cesarean delivery may affect the early biodiversity of intestinal bacteria. J Nutr. 2008;138(9):1796s–800.

    CAS  PubMed  Google Scholar 

  6. Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev. 2013;37(3):407–27.

    Article  CAS  PubMed  Google Scholar 

  7. Borody TJ, Finlayson S, Paramsothy S. Is Crohn’s disease ready for fecal microbiota transplantation? J Clin Gastroenterol. 2014;48(7):582–3.

    Article  PubMed  Google Scholar 

  8. Borozan I, Watt S, Ferretti V. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification. Bioinformatics. 2015;31(9):1396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breton J, et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 2015;23(2):324–34.

    Article  PubMed  CAS  Google Scholar 

  10. Campbell-Valois FX, Sansonetti PJ. Tracking bacterial pathogens with genetically-encoded reporters. FEBS Lett. 2014;588(15):2428–36.

    Article  CAS  PubMed  Google Scholar 

  11. Candela M, et al. Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol. 2014;20(4):908–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Caporaso JG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013;8(6):769–83.

    Article  CAS  PubMed  Google Scholar 

  14. Chen M, et al. Comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing. PLoS One. 2014;9(12):e114520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen M, et al. Correction: comparison of multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC) in single-cell sequencing. PLoS One. 2015;10(4):e0124990.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cole JR, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37 suppl 1:D141–5.

    Article  CAS  PubMed  Google Scholar 

  17. Consortium HMJRS. A catalog of reference genomes from the human microbiome. Science. 2010;328(5981):994–9.

    Article  CAS  Google Scholar 

  18. Consortium HMP. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    Article  CAS  Google Scholar 

  19. Costello EK, et al. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dean FB, et al. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res. 2001;11(6):1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dean FB, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A. 2002;99(8):5261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DeLong EF. Microbial community genomics in the ocean. Nat Rev Microbiol. 2005;3(6):459–69.

    Article  CAS  PubMed  Google Scholar 

  23. DeSantis TZ, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Diaz-Torres ML, et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Lett. 2006;258(2):257–62.

    Article  CAS  PubMed  Google Scholar 

  25. Diene SM, et al. Bacterial genomics and metagenomics: clinical applications and medical relevance. Rev Med Suisse. 2014;10(450):2155–61.

    CAS  PubMed  Google Scholar 

  26. Dominguez-Bello MG, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Donia MS, et al. A systematic analysis of biosynthetic gene clusters in the human microbiome reveals a common family of antibiotics. Cell. 2014;158(6):1402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. El Hadidi M, Ruscheweyh HJ, Huson D. Improved metagenome analysis using MEGAN5. In: Joint 21st annual international conference on Intelligent Systems for Molecular Biology (ISMB) and 12th European Conference on Computational Biology (ECCB), 2013.

    Google Scholar 

  29. Everard A, et al. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J. 2014;8(10):2116–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Falony G, Vieira-Silva S, Raes J. Microbiology Meets Big Data: the case of gut microbiota-derived trimethylamine. Annu Rev Microbiol. 2015;69:305–21.

    Article  CAS  PubMed  Google Scholar 

  31. Feng Q, Liang S, Jia H. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun. 2015;6:6528.

    Article  CAS  PubMed  Google Scholar 

  32. Goll J, et al. METAREP: JCVI metagenomics reports—an open source tool for high-performance comparative metagenomics. Bioinformatics. 2010;26(20):2631–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gomariz M, et al. From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic Bacteroidetes generalists. ISME J. 2015;9(1):16–31.

    Article  CAS  PubMed  Google Scholar 

  34. Graf T, Stadtfeld M. Heterogeneity of embryonic and adult stem cells. Cell Stem Cell. 2008;3(5):480–3.

    Article  CAS  PubMed  Google Scholar 

  35. Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  36. Handelsman J et al. The new science of metagenomics: revealing the secrets of our microbial planet. Nat Res Council Report. 2007. http://www.ncbi.nlm.nih.gov/pubmed/?term=The+new+science+of+metagenomics%3A+revealing+the+secrets+of+our+microbial+planet.

  37. Hatzenpichler R, et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16(8):2568–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hedlund BP, et al. Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter”. Extremophiles. 2014;18(5):865–75.

    Article  CAS  PubMed  Google Scholar 

  39. Hegazy ME, et al. Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J Adv Res. 2015;6(1):17–33.

    Article  CAS  PubMed  Google Scholar 

  40. Hernandez-Reyes C, et al. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb Biotechnol. 2014;7(6):580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hess M, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331(6016):463–7.

    Article  CAS  PubMed  Google Scholar 

  42. Hsiao EY, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  CAS  Google Scholar 

  44. Hunter CI, et al. Metagenomic analysis: the challenge of the data bonanza. Brief Bioinform. 2012;13(6):743–6.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Huson DH, et al. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Irish JM, Kotecha N, Nolan GP. Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer. 2006;6(2):146–55.

    Article  CAS  PubMed  Google Scholar 

  47. Jia B, et al. NeSSM: a next-generation sequencing simulator for metagenomics. Plos One. 2013;8(10):108–10.

    Article  Google Scholar 

  48. Jiahuan C, et al. Research in metagenomics and its applications in translational medicine. Yi Chuan. 2015;37(7):645–54.

    PubMed  Google Scholar 

  49. Jurkowski A, Reid AH, Labov JB. Metagenomics: a call for bringing a new science into the classroom (while it’s still new). CBE-Life Sci Educ. 2007;6(4):260–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kashtan N, et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science. 2014;344(6182):416–20.

    Article  CAS  PubMed  Google Scholar 

  51. Kawulok J, Deorowicz S. CoMeta: classification of metagenomes using k-mers. PLoS One. 2015;10(4):e0121453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kristiansson E, Hugenholtz P, Dalevi D. ShotgunFunctionalizeR: an R-package for functional comparison of metagenomes. Bioinformatics. 2009;25(20):2737–8.

    Article  CAS  PubMed  Google Scholar 

  53. Lasken RS. Single-cell sequencing in its prime. Nat Biotechnol. 2013;31(3):211–2.

    Article  CAS  PubMed  Google Scholar 

  54. Laufer AS, et al. Microbial communities of the upper respiratory tract and otitis media in children. MBio. 2011;2(1):e00245–10.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol. 2005;56(1):47–60.

    Article  PubMed  Google Scholar 

  56. Leslie M. MICROBIOME. Microbes aid cancer drugs. Science. 2015;350(6261):614–5.

    Article  CAS  PubMed  Google Scholar 

  57. Ley RE, et al. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol. 2008;6(10):776–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liang J, Cai W, Sun Z. Single-cell sequencing technologies: current and future. J Genet Genomics. 2014;41(10):513–28.

    Article  PubMed  Google Scholar 

  59. Liu N, Liu L, Pan X. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos. Cell Mol Life Sci. 2014;71(14):2707–15.

    Article  CAS  PubMed  Google Scholar 

  60. Loman NJ, et al. High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol. 2012;10(9):599–606.

    Article  CAS  PubMed  Google Scholar 

  61. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu X, et al. Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol. 2011;4(6):919–35.

    Article  Google Scholar 

  63. Luna RA, Foster JA. Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Curr Opin Biotechnol. 2015;32:35–41.

    Article  CAS  PubMed  Google Scholar 

  64. Lusiak-Szelachowska M, et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 2014;27(6):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mackelprang R, et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature. 2011;480(7377):368–71.

    Article  CAS  PubMed  Google Scholar 

  66. Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr. 1999;69(5):1035s–45.

    CAS  PubMed  Google Scholar 

  67. Magurran AE. Measuring biological diversity. Afr J Aquat Sci. 2004;29(2):285–6.

    Article  Google Scholar 

  68. Magurran AE. Measuring biological diversity. 1st ed. Malden: Wiley; 2013.

    Google Scholar 

  69. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011;12(8):453–66.

    Article  CAS  PubMed  Google Scholar 

  70. Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology. 2014;146(6):1500–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McDonald D, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6(3):610–8.

    Article  CAS  PubMed  Google Scholar 

  72. McLean JS, et al. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A. 2013;110(26):E2390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meyer F, et al. The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf. 2008;9(1):386.

    Article  CAS  Google Scholar 

  74. Minot S, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mitchell A et al. EBI metagenomics in 2016 – an expanding and evolving resource for the analysis and archiving of metagenomic data. Nucleic Acids Res. 2015;44(D1):D595–603.

    Google Scholar 

  76. Mitra S, Klar B, Huson DH. Visual and statistical comparison of metagenomes. Bioinformatics. 2009;25(15):1849–55.

    Article  CAS  PubMed  Google Scholar 

  77. Mitra S, et al. Comparison of multiple metagenomes using phylogenetic networks based on ecological indices. ISME J. 2010;4(10):1236–42.

    Article  PubMed  Google Scholar 

  78. Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy. Nature. 1991;351(6321):81–2.

    Article  CAS  PubMed  Google Scholar 

  79. Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15(6):387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nurk S, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20(10):714–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. O’Donnell AG, et al. Visualization, modelling and prediction in soil microbiology. Nat Rev Microbiol. 2007;5(9):689–99.

    Article  PubMed  CAS  Google Scholar 

  82. Ozsolak F, et al. Direct RNA sequencing. Nature. 2009;461(7265):814–8.

    Article  CAS  PubMed  Google Scholar 

  83. Pan X. Single cell analysis: from technology to biology and medicine. Single cell Biol. 2014;3(1):106.

    PubMed  PubMed Central  Google Scholar 

  84. Pan X. Single cell analysis: from technology to biology and medicine. Single Cell Biol. 2014;3(1). pii: 106. http://www.ncbi.nlm.nih.gov/pubmed/25177539.

  85. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics. 2010;26(6):715–21.

    Article  CAS  PubMed  Google Scholar 

  86. Peterson SN, et al. Functional expression of dental plaque microbiota. Front Cell Infect Microbiol. 2014;4:108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Pettigrew MM, et al. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl Environ Microbiol. 2012;78(17):6262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Price PB. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol. 2007;59(2):217–31.

    Article  CAS  PubMed  Google Scholar 

  89. Proctor GN. Mathematics of microbial plasmid instability and subsequent differential growth of plasmid-free and plasmid-containing cells, relevant to the analysis of experimental colony number data. Plasmid. 1994;32(2):101–30.

    Article  CAS  PubMed  Google Scholar 

  90. Pruesse E, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Puppels GJ, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 1990;347(6290):301–3.

    Article  CAS  PubMed  Google Scholar 

  92. Raghunathan A, et al. Genomic DNA amplification from a single bacterium. Appl Environ Microbiol. 2005;71(6):3342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Reid G, et al. Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol. 2011;9(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  94. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14.

    Article  CAS  PubMed  Google Scholar 

  95. Rinke C, et al. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc. 2014;9(5):1038–48.

    Article  CAS  PubMed  Google Scholar 

  96. Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31(31):107–33.

    Article  CAS  PubMed  Google Scholar 

  97. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):R227–40.

    Article  CAS  PubMed  Google Scholar 

  98. Schloss PD, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5:209.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Smits LP, et al. Therapeutic potential of fecal microbiota transplantation. Gastroenterology. 2013;145(5):946–53.

    Article  PubMed  Google Scholar 

  101. Stecher B, Berry D, Loy A. Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single-cell technology to explore the intestinal jungle. FEMS Microbiol Rev. 2013;37(5):793–829.

    Article  CAS  PubMed  Google Scholar 

  102. Su X, et al. Parallel-META 2.0: enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PLoS One. 2014;9(3):e89323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Su X, et al. Application of Meta-Mesh on the analysis of microbial communities from human associated-habitats. Quant Biol. 2015;3(1):4–18.

    Article  CAS  Google Scholar 

  104. Tang F, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82.

    Article  CAS  PubMed  Google Scholar 

  105. Taniguchi K, Kajiyama T, Kambara H. Quantitative analysis of gene expression in a single cell by qPCR. Nat Methods. 2009;6(7):503–6.

    Article  CAS  PubMed  Google Scholar 

  106. Tsuchiya S, et al. The “spanning protocol”: a new DNA extraction method for efficient single-cell genetic diagnosis. J Assist Reprod Genet. 2005;22(11–12):407–14.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Tuohy KM, et al. Metabolism of Maillard reaction products by the human gut microbiota-implications for health. Mol Nutr Food Res. 2006;50(9):847–57.

    Article  CAS  PubMed  Google Scholar 

  108. Turnbaugh PJ, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–131.

    Article  PubMed  Google Scholar 

  109. Turnbaugh PJ, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.

    Article  CAS  PubMed  Google Scholar 

  110. Udayappan SD, et al. Intestinal microbiota and faecal transplantation as treatment modality for insulin resistance and type 2 diabetes mellitus. Clin Exp Immunol. 2014;177(1):24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Vetizou M, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wagner M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol. 2009;63:411–29.

    Article  CAS  PubMed  Google Scholar 

  113. Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. 2010;28(6):281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang X, et al. Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization. Biomed Microdevices. 2012;14(3):443–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wen J, et al. K-mer natural vector and its application to the phylogenetic analysis of genetic sequences. Gene. 2014;546(1):25–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yatsunenko T, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zeglin LH, et al. Landscape distribution of microbial activity in the McMurdo dry valleys: linked biotic processes, hydrology, and geochemistry in a cold desert ecosystem. Ecosystems. 2009;12(4):562–73.

    Article  CAS  Google Scholar 

  118. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18(5):821–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang YJ, et al. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015;16(4):7493–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zong C, et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Ning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Han, M., Yang, P., Zhou, H., Li, H., Ning, K. (2016). Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research. In: Shen, B., Tang, H., Jiang, X. (eds) Translational Biomedical Informatics. Advances in Experimental Medicine and Biology, vol 939. Springer, Singapore. https://doi.org/10.1007/978-981-10-1503-8_6

Download citation

Publish with us

Policies and ethics