Skip to main content

Computational Methods in Mass Spectrometry-Based Proteomics

  • Chapter
  • First Online:
Translational Biomedical Informatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 939))

Abstract

This chapter introduces computational methods used in mass spectrometry-based proteomics, including those for addressing the critical problems such as peptide identification and protein inference, peptide and protein quantification, characterization of posttranslational modifications (PTMs), and data-independent acquisitions (DIA). The chapter concludes with emerging applications of proteomic techniques, such as metaproteomics, glycoproteomics, and proteogenomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.

    Article  CAS  PubMed  Google Scholar 

  2. Allmer J. Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Rev Proteomics. 2011;8:645–57.

    Article  PubMed  Google Scholar 

  3. Altelaar AM, Munoz J, Heck AJ. Next-generation proteomics: towards an integrative view of proteome dynamics. Nat Rev Genet. 2013;14:35–48.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics. 2006;5:573–88.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson NL, Anderson NG, Pearson TW, Borchers CH, Paulovich AG, Patterson SD, Gillette M, Aebersold R, Carr SA. A human proteome detection and quantitation project. Mol Cell Proteomics. 2009;8:883–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD. Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev. 2012;41:3912–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bailey CM, Sweet SM, Cunningham DL, Zeller M, Heath JK, Cooper HJ. SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J Proteome Res. 2009;8:1965–71.

    Article  CAS  PubMed  Google Scholar 

  8. Baker PR, Trinidad JC, Chalkley RJ. Modification site localization scoring integrated into a search engine. Mol Cell Proteomics. 2011;10:M111008078.

    Article  CAS  Google Scholar 

  9. Barsnes H, Vaudel M, Colaert N, Helsens K, Sickmann A, Berven FS, Martens L. Compomics-utilities: an open-source Java library for computational proteomics. BMC Bioinf. 2011;12:1.

    Article  Google Scholar 

  10. Beausoleil SA, Vill´en J, Gerber SA, Rush J, Gygi SP. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol. 2006;24:1285–92.

    Article  CAS  PubMed  Google Scholar 

  11. Bern M, Kil YJ, Becker C. Byonic: advanced peptide and protein identification software. Current Protoc Bioinf. 2012:13–20. doi:10.1002/0471250953.bi1320s40.

  12. Bouyssi´e D, de Peredo AG, Mouton E, Albigot R, Roussel L, Ortega N, Cayrol C, Burlet-Schiltz O, Girard J-P, Monsarrat B. MFPaQ, a new software to parse, validate, and quantify proteomic data generated by ICAT and SILAC mass spectrometric analyses: application to the proteomic study of membrane proteins from primary human endothelial cells. Mol Cell Proteomics. 2007;6(9):1621–37.

    Article  CAS  Google Scholar 

  13. Braisted JC, et al. The APEX quantitative proteomics tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinf. 2008;9:529.

    Article  CAS  Google Scholar 

  14. Chalkley RJ, Baker PR, Medzihradszky KF, Lynn AJ, Burlingame A. In-depth analysis of tandem mass spectrometry data from disparate instrument types. Mol Cell Proteomics. 2008;7:2386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen T, Kao M-Y, Tepel M, Rush J, Church GM. A dynamic programming approach to de novo peptide sequencing via tandem mass spectrometry. J Comput Biol. 2001;8:325–37.

    Article  CAS  PubMed  Google Scholar 

  16. Chi H, et al. pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra. J Proteome Res. 2012;12:615–25.

    Article  PubMed  CAS  Google Scholar 

  17. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, Gygi SP. A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol. 2015;33:743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free shotgun proteomics. Mol Cell Proteomics. 2008;7:2373–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999;71:2871–82.

    Article  CAS  PubMed  Google Scholar 

  20. Cottrell JS, London U. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    Article  PubMed  Google Scholar 

  21. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  CAS  PubMed  Google Scholar 

  22. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res. 2011;10:1794–805.

    Article  CAS  PubMed  Google Scholar 

  23. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7.

    Article  CAS  PubMed  Google Scholar 

  25. Craig R, Cortens J, Fenyo D, Beavis RC. Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res. 2006;5:1843–9.

    Article  CAS  PubMed  Google Scholar 

  26. Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB. Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics. 2015;15:1026–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA. De novo peptide sequencing via tandem mass spectrometry. J Comput Biol. 1999;6:327–42.

    Article  CAS  PubMed  Google Scholar 

  28. De Godoy LM, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fr¨ohlich F, Walther TC, Mann M. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008;455:1251–4.

    Article  PubMed  CAS  Google Scholar 

  29. DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2005;4:377–86.

    Article  CAS  PubMed  Google Scholar 

  30. Deutsch EW, et al. A guided tour of the Trans-Proteomic Pipeline. Proteomics. 2010;10:1150–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Diament BJ, Noble WS. Faster SEQUEST searching for peptide identification from tandem mass spectra. J Proteome Res. 2011;10:3871–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diamond DL, Jacobs JM, Paeper B, Proll SC, Gritsenko MA, Carithers RLJ, Larson AM, Yeh MM, Camp DG, Smith RD, Katze MG. Proteomic profiling of human liver biopsies: hepatitis C virus–induced fibrosis and mitochondrial dysfunction. Hepatology. 2007;46:649–57.

    Article  CAS  PubMed  Google Scholar 

  33. Dorfer V, Pichler P, Stranzl T, Stadlmann J, Taus T, Winkler S, Mechtler K. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res. 2014;13:3679–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in largescale protein identifications by mass spectrometry. Nat Methods. 2007;4:207–14.

    Article  CAS  PubMed  Google Scholar 

  35. Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J Mass Spectrom. 2009;44:1637–60.

    CAS  PubMed  Google Scholar 

  36. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994;5:976–89.

    Article  CAS  PubMed  Google Scholar 

  37. Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics. 2013;13:22–4.

    Article  CAS  PubMed  Google Scholar 

  38. Erickson AR, et al. Integrated metagenomics/metaproteomics reveals human hostmicrobiota signatures of Crohn’s disease. PLoS One. 2012;7:e49138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. F¨alth M, Sk¨old K, Norrman M, Svensson M, Feny¨o D, Andren PE. SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics. 2006;5:998–1005.

    Article  CAS  Google Scholar 

  40. Fermin D, Walmsley SJ, Gingras A-C, Choi H, Nesvizhskii AI. LuciPHOr: algorithm for phosphorylation site localization with false localization rate estimation using modified target-decoy approach. Mol Cell Proteomics. 2013;12:3409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Frank A, Pevzner P. PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem. 2005;77:964–73.

    Article  CAS  PubMed  Google Scholar 

  42. Frewen BE, Merrihew GE, Wu CC, Noble WS, MacCoss MJ. Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem. 2006;78:5678–84.

    Article  CAS  PubMed  Google Scholar 

  43. Fu Y. Data analysis strategies for protein modification identification. Stat Anal Proteomics. 2016;1362:265–75.

    Article  Google Scholar 

  44. Fulwyler MJ. Electronic separation of biological cells by volume. Science. 1965;150:910–1.

    Article  CAS  PubMed  Google Scholar 

  45. Gatlin CL, Eng JK, Cross ST, Detter JC, Yates JR. Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal Chem. 2000;72:757–63.

    Article  CAS  PubMed  Google Scholar 

  46. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang X, Shi W, Bryant SH. Open mass spectrometry search algorithm. J Proteome Res. 2004;3:958–64.

    Article  CAS  PubMed  Google Scholar 

  47. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11:O111.016717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gonzalez-Galarza FF, Lawless C, Hubbard SJ, Fan J, Bessant C, Hermjakob H, Jones AR. A critical appraisal of techniques, software packages, and standards for quantitative proteomic analysis. Omics. 2012;16:431–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two—dimensional electrophoresis and amino acid analysis. Biotechnology. 1996;14:1.

    Google Scholar 

  50. Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, Koziol JA, Schnitzer JE. Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol. 2010;28:83–9.

    Article  CAS  PubMed  Google Scholar 

  51. Gupta N. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res. 2007;17:1362–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.

    Article  CAS  PubMed  Google Scholar 

  53. He Z, Huang T, Liu X, Zhu P, Teng B, Deng S. Protein inference: a protein quantification perspective. Comput Biol Chem. 2016 (in press).

    Google Scholar 

  54. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 2011;40:D261–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hu H, Khatri K, Zaia J. Algorithms and design strategies towards automated glycoproteomics analysis. Mass Spectrom Rev. 2015. http://dx.doi.org/10.1002/mas.21487.

  56. Huang T, He Z. A linear programming model for protein inference problem in shotgun proteomics. Bioinformatics. 2012;28:2956–62.

    Article  CAS  PubMed  Google Scholar 

  57. Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4:1265–72.

    Article  CAS  PubMed  Google Scholar 

  58. James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys. 1997;30:279–331.

    Article  CAS  PubMed  Google Scholar 

  59. Jeong K, Kim S, Bandeira N. False discovery rates in spectral identification. BMC Bioinf. 2012;13:1.

    Article  CAS  Google Scholar 

  60. Jeong K, Kim S, Pevzner PA. UniNovo: a universal tool for de novo peptide sequencing. Bioinformatics. 2013;29(16):1953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ji L, Barrett T, Ayanbule O, Troup DB, Rudnev D, Muertter RN, Tomashevsky M, Soboleva A, Slotta DJ. NCBI Peptidome: a new repository for mass spectrometry proteomics data. Nucleic Acids Res. 2010;38:D731–5.

    Article  CAS  PubMed  Google Scholar 

  62. Johnson RS, Taylor JA. Searching sequence databases via de novo peptide sequencing by tandem mass spectrometry. Mol Biotechnol. 2002;22:301–15.

    Article  CAS  PubMed  Google Scholar 

  63. Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24:2534–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim S, Pevzner PA. MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun. 2014;5:5277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim S, Na S, Sim JW, Park H, Jeong J, Kim H, Seo Y, Seo J, Lee K-J, Paek E. MODi: a powerful and convenient web server for identifying multiple posttranslational peptide modifications from tandem mass spectra. Nucleic Acids Res. 2006;34:W258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim M-S, Zhong J, Pandey A. Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics. 2015;16(5):700–14.

    Article  CAS  Google Scholar 

  67. Lam H, Deutsch EW, Eddes JS, Eng JK, King N, Stein SE, Aebersold R. Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics. 2007;7:655–67.

    Article  CAS  PubMed  Google Scholar 

  68. Law KP, Lim YP. Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev Proteomics. 2013;10:551–66.

    Article  CAS  PubMed  Google Scholar 

  69. Li YF, Radivojac P. Computational approaches to protein inference in shotgun proteomics. BMC Bioinf. 2012;13:S4.

    CAS  Google Scholar 

  70. Li J, Steen H, Gygi SP. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents the yeast salinity stress response. Mol Cell Proteomics. 2003;2:1198–204.

    Article  CAS  PubMed  Google Scholar 

  71. Li YF, Arnold RJ, Li Y, Radivojac P, Sheng Q, Tang H. A Bayesian approach to protein inference problem in shotgun proteomics. J Comput Biol. 2009;16:1183–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li W, Ji L, Goya J, Tan G, Wysocki VH. SQID: an intensity-incorporated protein identification algorithm for tandem mass spectrometry. J Proteome Res. 2011;10:1593–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li S, Arnold RJ, Tang H, Radivojac P. Improving phosphopeptide identification in shotgun proteomics by supervised filtering of peptide-spectrum matches. In: Proceedings of the international conference on bioinformatics, computational biology and biomedical informatics. 2013;316.

    Google Scholar 

  74. Li J, et al. SysPTM 2.0: an updated systematic resource for post-translational modification. Database. 2014;2014. bau025.

    Google Scholar 

  75. Li Y, Zhong C-Q, Xu X, Cai S, Wu X, Zhang Y, Chen J, Shi J, Lin S, Han J. Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods. 2015;12:1105–6.

    Article  CAS  PubMed  Google Scholar 

  76. Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 2007;25:117–24.

    Article  CAS  PubMed  Google Scholar 

  77. Lu B, Ruse C, Xu T, Park SK, Yates J. Automatic validation of phosphopeptide identifications from tandem mass spectra. Anal Chem. 2007;79:1301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma B. Novor: real-time peptide de Novo sequencing software. J Am Soc Mass Spectrom. 2015;26:1885–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. MacLean D, Burrell MA, Studholme DJ, Jones AM. PhosCalc: a tool for evaluating the sites of peptide phosphorylation from mass spectrometer data. BMC Res Notes. 2008;1:30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26:966–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994;66:4390–9.

    Article  CAS  PubMed  Google Scholar 

  82. Mann M, Kulak NA, Nagaraj N, Cox J. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013;49:583–90.

    Article  CAS  PubMed  Google Scholar 

  83. Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bahler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell. 2012;3:671–83.

    Article  CAS  Google Scholar 

  84. Mayampurath A, Yu C-Y, Song E, Balan J, Mechref Y, Tang H. Computational framework for identification of intact glycopeptides in complex samples. Anal Chem. 2013;86:453–63.

    Article  PubMed  CAS  Google Scholar 

  85. Melton L. Protein arrays: proteomics in multiplex. Nature. 2004;429:101–7.

    Article  PubMed  CAS  Google Scholar 

  86. Meyer-Arendt K, Old WM, Houel S, Renganathan K, Eichelberger B, Resing KA, Ahn NG. IsoformResolver: a peptide-centric algorithm for protein inference. J Proteome Res. 2011;10:3060–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Monroe ME, Shaw JL, Daly DS, Adkins JN, Smith RD. MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS(/MS) features. Comput Biol Chem. 2008;32:215–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Moseley MA. Current trends in differential expression proteomics: isotopically coded tags. TRENDS Biotechnol. 2001;19:10–6.

    Article  Google Scholar 

  89. Muller O, Emilie EL. Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage. Nat Commun. 2014;5:5603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Na S, Jeong J, Park H, Lee K-J, Paek E. Unrestrictive identification of multiple post-translational modifications from tandem mass spectrometry using an error-tolerant algorithm based on an extended sequence tag approach. Mol Cell Proteomics. 2008;7:2452–63.

    Article  CAS  PubMed  Google Scholar 

  91. Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics. 2012;11:M111–010199.

    Article  PubMed  CAS  Google Scholar 

  92. Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods. 2014;11:1114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem. 2003;75:4646–58.

    Article  CAS  PubMed  Google Scholar 

  94. Nielsen ML, Savitski MM, Zubarev RA. Extent of modifications in human proteome samples and their effect on dynamic range of analysis in shotgun proteomics. Mol Cell Proteomics. 2006;5:2384–91.

    Article  CAS  PubMed  Google Scholar 

  95. Nov´ak J, Galgonek J, Hoksza D, Skopal T. Similarity search and applications. Berlin/Heidelberg: Springer; 2012. p. 242–3.

    Book  Google Scholar 

  96. Nov´ak J, Lemr K, Schug KA, Havl´ıˇcek V. CycloBranch: de novo sequencing of nonribosomal peptides from accurate product ion mass spectra. J Am Soc Mass Spectrom. 2015;26:1780–6.

    Article  CAS  Google Scholar 

  97. Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4:1487–502.

    Article  CAS  PubMed  Google Scholar 

  98. Olsen JV, Mann M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics. 2013;12:3444–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.

    Article  CAS  PubMed  Google Scholar 

  100. Ong S-E, Mann M. Mass spectrometry–based proteomics turns quantitative. Nat Chem Biol. 2005;1:252–62.

    Article  CAS  PubMed  Google Scholar 

  101. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86.

    Article  CAS  PubMed  Google Scholar 

  102. Pan S, Chen R, Aebersold R, Brentnall TA. Mass spectrometry based glycoproteomics from a proteomics perspective. Mol Cell Proteomics. 2011;10:R110–003251.

    PubMed  Google Scholar 

  103. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20:3551–67.

    Article  CAS  PubMed  Google Scholar 

  104. Pluskal T, Castillo S, Villar-Briones A, Oreˇsiˇc M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinf. 2010;11:1.

    Article  CAS  Google Scholar 

  105. Qin J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 2002;12:1231–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38(20):e191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Richards AL, Merrill AE, Coon JJ. Proteome sequencing goes deep. Curr Opin Chem Biol. 2015;24:11–7.

    Article  CAS  PubMed  Google Scholar 

  109. Risk BA, Edwards NJ, Giddings MC. A peptide-spectrum scoring system based on ion alignment, intensity, and pair probabilities. J Proteome Res. 2013;12:4240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rodr´ıguez-Su´arez E, Gubb E, Alzueta IF, Falc´on-P´erez JM, Amorim A, Elortza F, Matthiesen R. Virtual expert mass spectrometrist: iTRAQ tool for database-dependent search, quantitation and result storage. Proteomics. 2010;10:1545–56.

    Article  CAS  Google Scholar 

  111. Rost HL. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 2014;32:219–23.

    Article  PubMed  CAS  Google Scholar 

  112. Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B. Confident phosphorylation site localization using the Mascot Delta Score. Mol Cell Proteomics. 2011;10:M110–003830.

    Article  PubMed  CAS  Google Scholar 

  113. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012;9:811–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Selbach M. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.

    Article  CAS  PubMed  Google Scholar 

  115. Serang O, MacCoss MJ, Noble WS. Efficient marginalization to compute protein posterior probabilities from shotgun mass spectrometry data. J Proteome Res. 2010;9:5346–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shenoy A, Geiger T. Super-SILAC: current trends and future perspectives. Expert Rev Proteomics. 2015;12:13–9.

    Article  CAS  PubMed  Google Scholar 

  117. Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics. 2007;6:1638–55.

    Article  CAS  PubMed  Google Scholar 

  119. Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol. 2004;5:699–711.

    Article  CAS  PubMed  Google Scholar 

  120. Sturm M, et al. OpenMS–an open-source software framework for mass spectrometry. BMC Bioinf. 2008;9:163.

    Article  CAS  Google Scholar 

  121. Tabb DL, Fernando CG, Chambers MC. MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res. 2007;6:654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tang H, Arnold RJ, Alves P, Xun Z, Clemmer DE, Novotny MV, Reilly JP, Radivojac P. A computational approach toward label-free protein quantification using predicted peptide detectability. Bioinformatics. 2006;22:481–8.

    Article  Google Scholar 

  123. Tanner S, Shu H, Frank A, Wang L-C, Zandi E, Mumby M, Pevzner PA, Bafna V. InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem. 2005;77:4626–39.

    Article  CAS  PubMed  Google Scholar 

  124. Tanner S, Pevzner PA, Bafna V. Unrestrictive identification of post-translational modifications through peptide mass spectrometry. Nat Protoc. 2006;1:67.

    Article  CAS  PubMed  Google Scholar 

  125. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10:5354–62.

    Article  CAS  PubMed  Google Scholar 

  126. Ting YS, Egertson JD, Payne SH, Kim S, MacLean B, K¨all L, Aebersold R, Smith RD, Noble WS, MacCoss MJ. Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data. Mol Cell Proteomics. 2015;14:2301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Trudgian DC, Singleton R, Cockman ME, Ratcliffe PJ, Kessler BM. ModLS: post-translational modification localization scoring with automatic specificity expansion. J Proteomics Bioinf. 2012;5:283–9.

    Article  Google Scholar 

  128. Tsou C-C, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras AC, Nesvizhskii AI. DIA-Umpire: comprehensive computational framework for data independent acquisition proteomics. Nat Methods. 2015;12:258–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tsur D, Tanner S, Zandi E, Bafna V, Pevzner PA. Identification of posttranslational modifications via blind search of mass-spectra. In: Proceedings IEEE computational systems bioinformatics conference. 2005;157–166.

    Google Scholar 

  130. V´ekey K, Ozohanics O, T´oth E, Jek˝o A, R´ev´esz A, Kreny´acz J, Drahos L. Fragmentation characteristics of glycopeptides. Int J Mass Spectrom. 2013;345:71–9.

    Article  CAS  Google Scholar 

  131. Vaudel M, Burkhart JM, Zahedi RP, Oveland E, Berven FS, Sickmann A, Martens L, Barsnes H. PeptideShaker enables reanalysis of MS-derived proteomics data sets. Nat Biotechnol. 2015;33:22–4.

    Article  CAS  PubMed  Google Scholar 

  132. Verberkmoes NC, et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3:179–89.

    Article  CAS  PubMed  Google Scholar 

  133. Vizcaíno JA, et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013;41:D1063–9.

    Article  PubMed  CAS  Google Scholar 

  134. Vogel C, Marcotte EM. Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat Protoc. 2008;3:1444–51.

    Article  CAS  PubMed  Google Scholar 

  135. Walther TC, Mann M. Mass spectrometry–based proteomics in cell biology. J Cell Biol. 2010;190:491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wan Y, Cripps D, Thomas S, Campbell P, Ambulos N, Chen T, Yang A. PhosphoScan: a probability-based method for phosphorylation site prediction using MS2/MS3 pair information. J Proteome Res. 2008;7:2803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang L-h, Li D-Q, Fu Y, Wang H-P, Zhang J-F, Yuan Z-F, Sun RX, Zeng R, He S-M, Gao W. pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry. Rapid Commun Mass Spectrom. 2007;21:2985–91.

    Article  CAS  PubMed  Google Scholar 

  138. Wasinger VC, Zeng M, Yau Y. Current status and advances in quantitative proteomic mass spectrometry. Int J Proteomics. 2013;2013:180605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Weisser H, et al. An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res. 2013;12:1628–44.

    Article  CAS  PubMed  Google Scholar 

  140. Wenger CD, Coon JJ. A proteomics search algorithm specifically designed for high-resolution tandem mass spectra. J Proteome Res. 2013;12:1377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wenger CD, Phanstiel DH, Lee M, Bailey DJ, Coon JJ. COMPASS: a suite of pre- and post-search proteomics software tools for OMSSA. Proteomics. 2011;11:1064–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics. 2007;7:340–50.

    Article  CAS  PubMed  Google Scholar 

  143. Wilhelm M, et al. Mass-spectrometry-based draft of the human proteome. Nature. 2014;509:582–7.

    Article  CAS  PubMed  Google Scholar 

  144. Yadav AK, Kumar D, Dash D. MassWiz: a novel scoring algorithm with target decoy based analysis pipeline for tandem mass spectrometry. J Proteome Res. 2011;10:2154–60.

    Article  CAS  PubMed  Google Scholar 

  145. Yang B, et al. Identification of cross-linked peptides from complex samples. Nat Methods. 2012;9:904–6.

    Article  CAS  PubMed  Google Scholar 

  146. Yates JR, Morgan SF, Gatlin CL, Griffin PR, Eng JK. Method to compare collision-induced dissociation spectra of peptides: potential for library searching and subtractive analysis. Anal Chem. 1998;70:3557–65.

    Article  CAS  PubMed  Google Scholar 

  147. Ye D, Fu Y, Sun R-X, Wang H-P, Yuan Z-F, Chi H, He S-M. Open MS/MS spectral library search to identify unanticipated post-translational modifications and increase spectral identification rate. Bioinformatics. 2010;26:i399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF. Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res. 2006;5:2909–18.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2012;11:M111–010587.

    Article  CAS  Google Scholar 

  150. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38:e132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Zickmann F, Renard BY. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms. Bioinformatics. 2015;31:i106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zieske LR. A perspective on the use of iTRAQTM reagent technology for protein complex and profiling studies. J Exp Bot. 2006;57:1501–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the grants R01 AI108888 and R01 GM103725 from National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixu Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, S., Tang, H. (2016). Computational Methods in Mass Spectrometry-Based Proteomics. In: Shen, B., Tang, H., Jiang, X. (eds) Translational Biomedical Informatics. Advances in Experimental Medicine and Biology, vol 939. Springer, Singapore. https://doi.org/10.1007/978-981-10-1503-8_4

Download citation

Publish with us

Policies and ethics