Skip to main content

Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling

  • Chapter
  • First Online:
Translational Biomedical Informatics

Abstract

Protein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies. As an example, structure modeling methods were used to investigate the relation between mutation-caused misfolding of protein and human diseases including epilepsy and leukemia. Protein structure prediction and modeling were also applied in nucleotide-gated channels and their interaction interfaces to investigate their roles in brain and heart cells. In molecular mechanism studies of plants, rice salinity tolerance mechanism was studied via structure modeling on crucial proteins identified by systems biology analysis; trait-associated protein-protein interactions were modeled, which sheds some light on the roles of mutations in soybean oil/protein content. In the age of precision medicine, we believe protein structure prediction and modeling will play more and more important roles in investigating biomedical mechanism of diseases and drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner M, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bairoch A, et al. The universal protein resource (UniProt) 2009. Nucleic Acids Res. 2009;37:D169–74.

    Article  Google Scholar 

  3. Baumann I, Bennett JM, Niemeyer CM, Thiele J, Shannon K. Juvenile Myelomonocytic Leukemia (JMML). In: Swerdlow SH, I.A.f.R.o. Cancer, W.H. Organization, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  4. Berman HM, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Biasini M, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;p. gku340.

    Google Scholar 

  6. Borgwardt KM, et al. Protein function prediction via graph kernels. Bioinformatics. 2005;21:I47–56.

    Article  CAS  PubMed  Google Scholar 

  7. Boscher C, Nabi IR. Caveolin-1: role in cell signaling. Adv Exp Med Biol. 2012;729:29–50.

    Article  CAS  PubMed  Google Scholar 

  8. Bowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known 3-dimensional structure. Science. 1991;253(5016):164–70.

    Article  CAS  PubMed  Google Scholar 

  9. Brooks BR, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30(10):1545–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Couet J, et al. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem. 1997;272(10):6525–33.

    Article  CAS  PubMed  Google Scholar 

  11. de Castro E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34(Web Server issue):W362–5.

    Article  PubMed  PubMed Central  Google Scholar 

  12. DeLano WL. The PyMOL molecular graphics system. Palo Alto: DeLano Scientific; 2002.

    Google Scholar 

  13. DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 1993;55:455–72.

    Article  CAS  PubMed  Google Scholar 

  14. Friedberg I. Automated protein function prediction – the genomic challenge. Brief Bioinform. 2006;7(3):225–42.

    Article  CAS  PubMed  Google Scholar 

  15. Gao M, Zhou HY, Skolnick J. Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure. 2015;23(7):1362–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gherardini PF, et al. Modular architecture of nucleotide-binding pockets. Nucleic Acids Res. 2010;38(11):3809–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988;241(4861):42–52.

    Article  CAS  PubMed  Google Scholar 

  18. Harkin LA, et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet. 2002;70(2):530–6.

    Article  CAS  PubMed  Google Scholar 

  19. Iserte J, et al. I-COMS: interprotein-COrrelated mutations server. Nucleic Acids Res. 2015;43(W1):W320–5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ishii A, et al. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res. 2014;108(3):420–32.

    Article  CAS  PubMed  Google Scholar 

  21. Ito JI, et al. PoSSuM: a database of similar protein-ligand binding and putative pockets. Nucleic Acids Res. 2012;40(D1):D541–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kallberg M, et al. Template-based protein structure modeling using the RaptorX web server. Nat Protoc. 2012;7(8):1511–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang JQ, et al. Slow degradation and aggregation in vitro of mutant GABAA receptor gamma2(Q351X) subunits associated with epilepsy. J Neurosci. 2010;30(41):13895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang J-Q, et al. The human epilepsy mutation GABRG2 (Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18(7):988–996.

    Google Scholar 

  25. Khoury MJ, et al. A population approach to precision medicine. Am J Prev Med. 2012;42(6):639–45.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim DE, Chivian D, Baker D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res. 2004;32:W526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kirshner DA, Nilmeier JP, Lightstone FC. Catalytic site identification-a web server to identify catalytic site structural matches throughout PDB. Nucleic Acids Res. 2013;41(W1):W256–65.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Konc J, Janezic D. ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics. 2010;26(9):1160–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konc J, Janezic D. Binding site comparison for function prediction and pharmaceutical discovery. Curr Opin Struct Biol. 2014;25:34–9.

    Article  CAS  PubMed  Google Scholar 

  30. Konc J, et al. Structure-based function prediction of uncharacterized protein using binding sites comparison. Plos Comput Biol. 2013;9(11).

    Google Scholar 

  31. Konc J, et al. ProBiS-CHARMMing: web interface for prediction and optimization of ligands in protein binding sites. J Chem Inf Model. 2015;55(11):2308–14.

    Article  CAS  PubMed  Google Scholar 

  32. Kryshtafovych A, Fidelis K, Moult J. CASP10 results compared to those of previous CASP experiments. Proteins-Struct Funct Bioinf. 2014;82:164–74.

    Article  CAS  Google Scholar 

  33. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–82.

    Article  CAS  PubMed  Google Scholar 

  34. Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51(10):2778–86.

    Article  CAS  PubMed  Google Scholar 

  35. Lauchle JH, Braun B. Targeting RAS signaling pathways in Juvenile Myelomonocytic Leukemia (JMML). In: Houghton PJ, Arceci RJ, editors. Molecularly targeted therapy for childhood cancer. New York: Springer; 2010. p. 123–38.

    Chapter  Google Scholar 

  36. Leaver-Fay A, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Z, Scheraga HA. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci U S A. 1987;84(19):6611–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liang J, Edelsbrunner H, Woodward C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci. 1998;7(9):1884–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loh ML, Vattikuti S, Schubbert S, Reynolds MG, Carlson E, Lieuw KH, Ptpn T. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103(6):2325–32.

    Article  CAS  PubMed  Google Scholar 

  40. Ludwig A, et al. Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J. 1999;18(9):2323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mackay TFC. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet. 2014;15(1):22–33.

    Article  CAS  PubMed  Google Scholar 

  42. Mashiach E, et al. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008;36(Web Server issue):W229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller PS, Aricescu AR. Crystal structure of a human GABAA receptor. Nature. 2014;18(7):988–996.

    Google Scholar 

  44. Mitchell A, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43(D1):D213–21.

    Article  PubMed  Google Scholar 

  45. Moult J, et al. Critical assessment of methods of protein structure prediction (CASP) – Round IX. Proteins-Struct Funct Bioinf. 2011;79:1–5.

    Article  CAS  Google Scholar 

  46. Nagarajan N, Kingsford C. GiRaF: robust, computational identification of influenza reassortments via graph mining. Nucleic Acids Res. 2011;39(6):e34.

    Article  CAS  PubMed  Google Scholar 

  47. Neer EJ, et al. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994;371(6495):297–300.

    Article  CAS  PubMed  Google Scholar 

  48. Nilmeier JP, et al. Rapid catalytic template searching as an enzyme function prediction procedure. Plos One. 2013;8(5):e62535.

    Google Scholar 

  49. Noebels JL. Exploring new gene discoveries in idiopathic generalized epilepsy. Epilepsia. 2003;44:16–21.

    Article  CAS  PubMed  Google Scholar 

  50. Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996;58:299–327.

    Article  CAS  PubMed  Google Scholar 

  51. Pettersen EF, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.

    Article  CAS  PubMed  Google Scholar 

  52. Philippova MP, et al. T-cadherin and signal-transducing molecules co-localize in caveolin-rich membrane domains of vascular smooth muscle cells. FEBS Lett. 1998;429(2):207–10.

    Article  CAS  PubMed  Google Scholar 

  53. Radivojac P, et al. A large-scale evaluation of computational protein function prediction. Nat Methods. 2013;10(3):221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rashid M, Ramasamy S, Raghava GPS. A simple approach for predicting protein-protein interactions. Curr Protein Pept Sci. 2010;11(7):589–600.

    Article  CAS  PubMed  Google Scholar 

  55. Rossmann MG, Moras D, Olsen KW. Chemical and biological evolution of nucleotide-binding protein. Nature. 1974;250(463):194–9.

    Article  CAS  PubMed  Google Scholar 

  56. Roy A, Yang JY, Zhang Y. COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012;40(W1):W471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santoro B, et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell. 1998;93(5):717–29.

    Article  CAS  PubMed  Google Scholar 

  58. Schmidtke P, Barril X. Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. J Med Chem. 2010;53(15):5858–67.

    Article  CAS  PubMed  Google Scholar 

  59. Schneidman-Duhovny D, et al. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(Web Server issue):W363–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwarz JM, et al. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Meth. 2010;7(8):575–6.

    Article  CAS  Google Scholar 

  61. Seaton G, et al. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics. 2002;18(2):339–40.

    Article  CAS  PubMed  Google Scholar 

  62. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  63. Simons KT, et al. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268(1):209–25.

    Article  CAS  PubMed  Google Scholar 

  64. Snyder CL, et al. Acyltransferase action in the modification of seed oil biosynthesis. N Biotechnol. 2009;26(1–2):11–6.

    Article  CAS  PubMed  Google Scholar 

  65. Soding J, Biegert A, Lupas AN. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005;33:W244–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Szilagyi A, Zhang Y. Template-based structure modeling of protein–protein interactions. Curr Opin Struct Biol. 2014;24:10–23.

    Article  CAS  PubMed  Google Scholar 

  67. Tang Z, et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem. 1996;271(4):2255–61.

    Article  CAS  PubMed  Google Scholar 

  68. Tovchigrechko A, Vakser IA. GRAMM-X public web server for protein-protein docking. Nucleic Acids Res. 2006;34:W310–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw. 1999;10(5):988–99.

    Article  CAS  PubMed  Google Scholar 

  70. Venselaar H, et al. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinf. 2010;11:548.

    Article  Google Scholar 

  71. Volkamer A, et al. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model. 2012;52(2):360–372.

    Google Scholar 

  72. Wang X, Zhang B. customProDB: an R package to generate customized protein databases from RNA-Seq data for proteomics search. Bioinformatics. 2013;29(24):3235–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang Z, Eickholt J, Cheng J. MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8. Bioinformatics. 2010;26(7):882–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang J, et al. A computational systems biology study for understanding salt tolerance mechanism in rice. PLoS One. 2013;8(6):e64929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang J, et al. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies. BMC Genomics. 2015;16(1):1011.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wass MN, Barton G, Sternberg MJE. CombFunc: predicting protein function using heterogeneous data sources. Nucleic Acids Res. 2012;40(W1):W466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Weselake RJ, et al. Increasing the flow of carbon into seed oil. Biotechnol Adv. 2009;27(6):866–78.

    Article  CAS  PubMed  Google Scholar 

  78. Xu Y, Xu D. Protein threading using PROSPECT: design and evaluation. Proteins-Struct Funct Genet. 2000;40(3):343–54.

    Article  CAS  PubMed  Google Scholar 

  79. Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins. 2012;80(7):1715–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ye B, et al. Caveolin-3 associates with and affects the function of hyperpolarization-activated cyclic nucleotide-gated channel 4. Biochemistry. 2008;47(47):12312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu GC, et al. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics. 2010;26(7):976–8.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 2008;9:40.

    Google Scholar 

  83. Zhang JF, et al. MUFOLD: a new solution for protein 3D structure prediction. Proteins-Struct Funct Bioinf. 2010;78(5):1137–52.

    Article  CAS  Google Scholar 

  84. Zhang J, et al. Prediction of protein tertiary structures using MUFOLD. In: Functional genomics. New York: Springer; 2012. p. 3–13.

    Google Scholar 

  85. Zhao JY, et al. Oil content in a European x Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci. 2005;45(1):51–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, J. et al. (2016). Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling. In: Shen, B., Tang, H., Jiang, X. (eds) Translational Biomedical Informatics. Advances in Experimental Medicine and Biology, vol 939. Springer, Singapore. https://doi.org/10.1007/978-981-10-1503-8_3

Download citation

Publish with us

Policies and ethics