Skip to main content

The Working Modules of Long Noncoding RNAs in Cancer Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

It is clear that RNA is more than just a messenger between gene and protein. The mammalian genome is pervasively transcribed, giving rise to tens of thousands of noncoding transcripts, especially long noncoding RNAs (lncRNAs). Whether all of these large transcripts are functional remains to be elucidated, but it is evident that there are many lncRNAs that seem not to be the “noise” of the transcriptome. Recent studies have set out to decode the regulatory role and functional diversity of lncRNAs in human physiological and pathological processes, and accumulating evidence suggests that most of the functional lncRNAs achieve their biological functions by controlling gene expression. In this chapter, we will organize these studies to provide a detailed description of the involvement of lncRNAs in the major steps of gene expression that include epigenetic regulation, RNA transcription, posttranscriptional RNA processing, protein translation, and posttranslational protein modification and highlight the molecular mechanisms through which lncRNAs function, involving the interactions between lncRNAs and other biological macromolecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ulitsky I, Bartel DP. LincRNAs: genomics, evolution, and mechanisms. Cell. 2013;154:26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang KC, Chang HY. Molecular mechanisms of long non-coding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pandey RR, Mondal T, Katayama F, et al. Kcnq1ot1 antisense non-coding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32:232–46.

    Article  CAS  PubMed  Google Scholar 

  5. Huarte M, Guttman M, Feldser D, et al. A large intergenic non-coding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kino T, Hurt DE, Ichijo T, et al. Non-coding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3:ra8.

    PubMed  PubMed Central  Google Scholar 

  7. Rapicavoli NA, Qu K, Zhang J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife. 2013;2:e00762.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of non-coding RNAs within cell-cycle promoters. Nat Genet. 2011;43:621–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsai MC, Manor O, Wan Y, et al. Long non-coding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeon Y, Lee JT. YY1 tethers Xist RNA to the inactive X nucleation center. Cell. 2011;146:119–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharma S, Findlay GM, Bandukwala HS, et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc Natl Acad Sci U S A. 2011;108:11381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458:223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ulitsky I, Shkumatava A, Jan CH, et al. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147:1537–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mancini-Dinardo D, Steele SJ, Levorse JM, et al. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev. 2006;20(10):1268–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fitzpatrick GV, Soloway PD, Higgins MJ. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet. 2002;32(3):426–31.

    Article  CAS  PubMed  Google Scholar 

  16. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagano T, Mitchell JA, Sanz LA, et al. The Air non-coding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.

    Article  CAS  PubMed  Google Scholar 

  18. Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by non-coding RNAs. Cell. 2007;129(7):1311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Ruscio A, Ebralidze AK, Benoukraf T, et al. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature. 2013;503(7476):371–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang L, Zhao Y, Bao X, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 2015;25(3):335–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wutz A. RNA-mediated silencing mechanisms in mammalian cells. Prog Mol Biol Transl Sci. 2011;101:351–76.

    Article  CAS  PubMed  Google Scholar 

  22. McConnell BB, Vertino PM. TMS1/ASC: the cancer connection. Apoptosis. 2004;9:5–18.

    Article  CAS  PubMed  Google Scholar 

  23. Conway KE, McConnell BB, Bowring CE, et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000;60(22):6236–42.

    CAS  PubMed  Google Scholar 

  24. Moriai R, Tsuji N, Kobayashi D, et al. A proapoptotic caspase recruitment domain protein gene, TMS1, is hypermethylated in human breast and gastric cancers. Anticancer Res. 2002;22(6C):4163–8.

    CAS  PubMed  Google Scholar 

  25. Stone AR, Bobo W, Brat DJ, et al. Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am J Pathol. 2004;165(4):1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Virmani A, Rathi A, Sugio K, et al. Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. Int J Cancer. 2003;106(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  27. Yokoyama T, Sagara J, Guan X, et al. Methylation of ASC/TMS1, a proapoptotic gene responsible for activating procaspase-1, in human colorectal cancer. Cancer Lett. 2003;202(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kapoor-Vazirani P, Kagey JD, Powell DR, Vertino PM. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 2008;68(16):6810–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang Y, Sun L, Kokura K, et al. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun. 2011;2:533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hashimoto H, Vertino PM, Cheng X. Molecular coupling of DNA methylation and histone methylation. Epigenomics. 2010;2(5):657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.

    Article  CAS  PubMed  Google Scholar 

  32. Estève PO, Chin HG, Smallwood A, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 2006;20(22):3089–103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mohammad F, Pandey GK, Mondal T, et al. Long non-coding RNA-mediated maintenance of DNA methylation and transcriptional gene silencing. Development. 2012;139(15):2792–803.

    Article  CAS  PubMed  Google Scholar 

  34. Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome. Science. 2005;309(5740):1564–6.

    Article  PubMed  Google Scholar 

  35. Sigova AA, Mullen AC, Molinie B, et al. Divergent transcription of long non-coding RNA/mRNA gene pairs in embryonic stem cells. Proc Nat Acad Sci USA. 2013;110(8):2876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Arab K, Park YJ, Lindroth AM, et al. Long non-coding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell. 2014;55(4):604–14.

    Article  CAS  PubMed  Google Scholar 

  37. Quinodoz S, Guttman M. Long non-coding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014;24(11):651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kwek KY, Murphy S, Furger A, et al. U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nat Struct Biol. 2002;9(11):800–5.

    CAS  PubMed  Google Scholar 

  39. Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012;13(10):720–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol Cell. 2006;23(3):297–305.

    Article  CAS  PubMed  Google Scholar 

  41. Yik JH, Chen R, Nishimura R, et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell. 2003;12(4):971–82.

    Article  CAS  PubMed  Google Scholar 

  42. Ji X, Zhou Y, Pandit S, et al. SR proteins collaborate with 7SK and promoter-associated nascent RNA to release paused polymerase. Cell. 2013;153(4):855–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang ET, Sandberg R, Luo S, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martianov I, Ramadass A, Barros S, et al. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 2007;445:666–70.

    Article  CAS  PubMed  Google Scholar 

  45. Lanz RB, Razani B, Goldberg AD, O’Malley BW. Distinct RNA motifs are important for coactivation of steroid hormone receptors by steroid receptor RNA activator (SRA). Proc Natl Acad Sci U S A. 2002;99:16081–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng J, Bi C, Clark BS, et al. The Evf-2 non-coding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev. 2006;20:1470–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hah N, Danko CG, Core L, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell. 2011;145:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim TK, Hemberg M, Gray JM, et al. Widespread transcription at neuronal activity-regulated enhancers. Nature. 2010;465:182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang D, Garcia-Bassets I, Benner C, et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li W, Notani D, Ma Q, et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature. 2013;498:516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Figueroa A, Fujita Y, Gorospe M. Hacking RNA: Hakai promotes tumorigenesis by enhancing the RNA-binding function of PSF. Cell Cycle. 2009;8:3648–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Galietta A, Gunby RH, Redaelli S, et al. NPM/ALK binds and phosphorylates the RNA/DNA-binding protein PSF in anaplastic large-cell lymphoma. Blood. 2007;100:2600–9.

    Article  CAS  Google Scholar 

  53. Song X, Wang B, Bromberg M, et al. Retroviral-mediated transmission of a mouse VL30 RNA to human melanoma cells promotes metastasis in an immunodeficient mouse model. Proc Natl Acad Sci U S A. 2002;99:6269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Song X, Sui A, Garen A. Binding of mouse VL30 retrotransposon RNA to PSF protein induces genes repressed by PSF: effects on steroidogenesis and oncogenesis. Proc Natl Acad Sci U S A. 2004;101:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Song X, Sun Y, Garen A. Roles of PSF protein and VL30 RNA in reversible gene regulation. Proc Natl Acad Sci U S A. 2005;102:12189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li L, Feng T, Lian Y. Role of human non-coding RNAs in the control of tumorigenesis. Proc Natl Acad Sci U S A. 2009;106:16794–8.

    Article  Google Scholar 

  57. Wang G, Cui Y, Zhang G, et al. Regulation of proto-oncogene transcription, cell proliferation, and tumorigenesis in mice by PSF protein and a VL30 non-coding RNA. Proc Natl Acad Sci U S A. 2009;106:16794–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lane DP, Fischer PM. Turning the key on p53. Nature. 2004;427:789–90.

    Article  CAS  PubMed  Google Scholar 

  59. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature. 2004;432:307–15.

    Article  CAS  PubMed  Google Scholar 

  60. Vogelstein BB, Lane DD, Levine AA. Surfing the p53 network. Nature. 2000;408:307–10.

    Article  CAS  PubMed  Google Scholar 

  61. Brugarolas J, Chandrasekaran C, Gordon JI, et al. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature. 1995;337:552–7.

    Article  Google Scholar 

  62. Yu J, Zhang L, Hwang PM, et al. Identification and classification of p53-regulated genes. Proc Natl Acad Sci U S A. 1996;96:14517–22.

    Article  Google Scholar 

  63. Zhao R, Gish K, Mruphy M, et al. Analysis of p53-regualted gene expression patterns using oligonucleotide arrays. Genes Dev. 2000;14:981–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Suzuki HI, Miyazono K. Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl). 2010;88:1085–94.

    Article  CAS  Google Scholar 

  65. Gardner EJ, Nizami ZF, Talbot Jr CC, Gall JG. Stable intronic sequence RNA (sisRNA), a new class of non-coding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev. 2012;26:2550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qian L, Vu MN, Carter M, Wilkinson MF. A spliced intron accumulates as a lariat in the nucleus of T cells. Nucleic Acids Res. 1992;20:5345–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang Y, Zhang XO, Chen T, et al. Circular intronic long non-coding RNAs. Mol Cell. 2013;51:792–806.

    Article  CAS  PubMed  Google Scholar 

  68. Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006;126(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  69. Lin S, Fu XD. SR proteins and related factors in alternative splicing. Adv Exp Med Biol. 2007;623:107–22.

    Article  PubMed  Google Scholar 

  70. Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  71. Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.

    Article  CAS  PubMed  Google Scholar 

  72. Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature. 2008;454:126–30.

    Google Scholar 

  73. Schmucker D, Clemens JC, Shu H, et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000;101(6):671–84.

    Article  CAS  PubMed  Google Scholar 

  74. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel non-coding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

    Article  PubMed  CAS  Google Scholar 

  75. Guffanti A, Iacono M, Pelucchi P, et al. A transcriptional sketch of a primary human breast cancer by 454 deep sequencing. BMC Genomics. 2009;10:163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Lai MC, Yang Z, Zhou L, et al. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med Oncol. 2011;29:1810–6.

    Article  PubMed  CAS  Google Scholar 

  77. Lin R, Maeda S, Liu C, et al. A large non-coding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26:851–8.

    Article  CAS  PubMed  Google Scholar 

  78. Luo JH, Ren B, Keryanov S, et al. Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology. 2006;44:1012–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schmidt LH, Spieker T, Koschmieder S, et al. The long non-coding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011;6:1984–92.

    Article  PubMed  Google Scholar 

  80. Hall LL, Smith KP, Byron M, Lawrence JB. Molecular anatomy of a speckle. Anat Rec A: Discov Mol Cell Evol Biol. 2006;288:664–75.

    Article  Google Scholar 

  81. Lamond AI, Spector DL. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol. 2003;4:605–12.

    Article  CAS  PubMed  Google Scholar 

  82. Chen LL, Carmichael GG. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear non-coding RNA. Mol Cell. 2009;35:467–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear non-coding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33:717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sasaki YT, Ideue T, Sano M, et al. MENepsilon/beta non-coding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci U S A. 2009;106:2525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sunwoo H, Dinger ME, Wilusz JE, et al. MEN varepsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 2009;19:347–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained non-coding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39:925–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bernard D, Prasanth KV, Tripathi V, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29:3082–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sellier C, Rau F, Liu Y, et al. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients. EMBO J. 2010;29:1248–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Engreitz JM, Sirokman K, McDonel P, et al. RNA-RNA interactions enable specific targeting of non-coding RNAs to nascent pre-mRNAs and chromatin sites. Cell. 2014;159:188–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. West JA, Davis CP, Sunwoo H, et al. The long non-coding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell. 2014;55:791–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin R, Roychowdhury-Saha M, Black C, et al. Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett. 2011;585:671–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tripathi V, Shen Z, Chakraborty A, et al. Long non-coding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9:e1003368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gutschner T, Hämmerle M, Eissmann M, et al. The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang B, Arun G, Mao YS, et al. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2:111–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yin QF, Yang L, Zhang Y, et al. Long non-coding RNAs with snoRNA ends. Mol Cell. 2012;48:219–30.

    Article  CAS  PubMed  Google Scholar 

  96. Zhang XO, Yin QF, Wang HB, et al. Species-specific alternative splicing leads to unique expression of sno-lncRNAs. BMC Genomics. 2014;15:287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007;8:209–20.

    Article  CAS  PubMed  Google Scholar 

  98. Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.

    Article  CAS  PubMed  Google Scholar 

  99. Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and lgf1r. Nat Cell Biol. 2012;14:659–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yuan JH, Yang F, Wang F, et al. A long non-coding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.

    Article  CAS  PubMed  Google Scholar 

  101. Cesana M, Cacchiarelli D, Legnini I, et al. A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Franco-Zorrilla JM, Valli A, Todesco M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39:1033–7.

    Article  CAS  PubMed  Google Scholar 

  103. Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 2011;147:382–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011;147:370–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147:344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–34.

    Article  CAS  PubMed  Google Scholar 

  108. Guo JU, Agarwal V, Guo H, Bartel DP. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 2014;15:409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    Article  CAS  PubMed  Google Scholar 

  111. Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7:e30733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet. 2013;9:e1003777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wilusz JE, Sharp PA. Molecular biology. A circuitous route to non-coding RNA. Science. 2013;340:440–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang A, Zhou N, Huang J, et al. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 2013;23:340–50.

    Article  CAS  PubMed  Google Scholar 

  116. Yoon JH, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Beltran M, Puig I, Peña C, et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008;22(6):756–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Carrieri C, Cimatti L, Biagioli M, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491(7424):454–7.

    Article  CAS  PubMed  Google Scholar 

  119. Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-κB interacting long non-coding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015;27(3):370–81.

    Google Scholar 

  120. Wang P, Xue Y, Han Y, et al. The STAT3-binding long non-coding RNA lncc-DC controls human dendritic cell differentiation. Science. 2014;344(6181):310–3.

    Article  CAS  PubMed  Google Scholar 

  121. Wutz A, Rasmussen TP, Jaenisch R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet. 2002;30:167–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, L., Song, X. (2016). The Working Modules of Long Noncoding RNAs in Cancer Cells. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_2

Download citation

Publish with us

Policies and ethics