Skip to main content

Noncoding RNAs in Cancer Diagnosis

  • Chapter
  • First Online:
The Long and Short Non-coding RNAs in Cancer Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

The accuracy and efficiency of tumor treatment depends mainly on early and precise diagnosis. Although histopathology is always the gold standard for cancer diagnosis, noninvasive biomarkers represent an opportunity for early detection and molecular staging of cancer. Besides the classical tumor markers, noncoding RNAs (ncRNAs) emerge to be a novel category of biomarker for cancer diagnosis since the dysregulation of ncRNAs is closely associated with the development and progression of human cancers such as liver, lung, breast, gastric, and other kinds of cancers. In this chapter, we will summarize the different types of ncRNAs in the diagnosis of major human cancers. In addition, we will introduce the recent advances in the detection and applications of circulating serum or plasma ncRNAs and non-blood fluid ncRNAs because the noninvasive body fluid-based assays are easy to examine for cancer diagnosis and monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anker P, Mulcahy H, Stroun M. Circulating nucleic acids in plasma and serum as a noninvasive investigation for cancer: time for large-scale clinical studies? Int J Cancer. 2003;103:149–52. doi:10.1002/ijc.10791.

    Article  CAS  PubMed  Google Scholar 

  2. Perez DS, et al. Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet. 2008;17:642–55. doi:10.1093/hmg/ddm336.

    Article  CAS  PubMed  Google Scholar 

  3. Ponting CP, Belgard TG. Transcribed dark matter: meaning or myth? Hum Mol Genet. 2010;19:R162–8. doi:10.1093/hmg/ddq362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Place RF, Noonan EJ. Non-coding RNAs turn up the heat: an emerging layer of novel regulators in the mammalian heat shock response. Cell Stress Chaperones. 2014;19:159–72. doi:10.1007/s12192-013-0456-5.

    Article  CAS  PubMed  Google Scholar 

  5. Gomes AQ, Nolasco S, Soares H. Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci. 2013;14:16010–39. doi:10.3390/ijms140816010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7, e30733. doi:10.1371/journal.pone.0030733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weick EM, Miska EA. piRNAs: from biogenesis to function. Development. 2014;141:3458–71. doi:10.1242/dev.094037.

    Article  CAS  PubMed  Google Scholar 

  8. Rinn JL, Chang HY. Genome regulation by long non-coding RNAs. Annu Rev Biochem. 2012;81:145–66. doi:10.1146/annurev-biochem-051410-092902.

    Article  CAS  PubMed  Google Scholar 

  9. Hodgkinson A, Chen Y, Eyre-Walker A. The large-scale distribution of somatic mutations in cancer genomes. Hum Mutat. 2012;33:136–43. doi:10.1002/humu.21616.

    Article  CAS  PubMed  Google Scholar 

  10. Cheetham SW, Gruhl F, Mattick JS, Dinger ME. Long non-coding RNAs and the genetics of cancer. Br J Cancer. 2013;108:2419–25. doi:10.1038/bjc.2013.233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pin Wang YX, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X. The STAT3-binding long non-coding RNA lnc-DC controls human dendritic cell differentiation. Science. 2014;18:310–3. doi:10.1126/science.1251456.

    Google Scholar 

  12. Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol. 2013;26:155–65. doi:10.1038/modpathol.2012.160.

    Article  CAS  PubMed  Google Scholar 

  13. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–9. doi:10.1038/nrg2521.

    Article  CAS  PubMed  Google Scholar 

  14. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39. doi:10.1002/path.2638.

    Article  CAS  PubMed  Google Scholar 

  15. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925–33. doi:10.4161/rna.24604.

    PubMed  Google Scholar 

  16. St Laurent G, Wahlestedt C, Kapranov P. The landscape of long non-coding RNA classification. Trends Genet. 2015;31:239–51. doi:10.1016/j.tig.2015.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gardner PP, Bateman A, Poole AM. SnoPatrol: how many snoRNA genes are there. J Biol. 2010;9:4. doi:10.1186/jbiol1211.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Terns MP, Terns RM. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 2002;10:17–39.

    CAS  PubMed  Google Scholar 

  19. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is down-regulated in breast cancer. Oncogene. 2009;28:195–208. doi:10.1038/onc.2008.373.

    Article  CAS  PubMed  Google Scholar 

  20. Dong XY, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008;17:1031–42. doi:10.1093/hmg/ddm375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sasaki T, Shiohama A, Minoshima S, Shimizu N. Identification of eight members of the Argonaute family in the human genome. Genomics. 2003;82:323–30.

    Article  CAS  PubMed  Google Scholar 

  22. Aravin A, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006;442:203–7. doi:10.1038/nature04916.

    CAS  PubMed  Google Scholar 

  23. Kwon C, et al. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun. 2014;446:218–23. doi:10.1016/j.bbrc.2014.02.112.

    Article  CAS  PubMed  Google Scholar 

  24. Moyano M, Stefani G. piRNA involvement in genome stability and human cancer. J Hematol Oncol. 2015;8:38. doi:10.1186/s13045-015-0133-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rosalind C, Lee RLF, Ambrost V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to & II-14. Cell. 1993;75:843–54. doi:10.1016/0092-8674(93)90529-Y.

    Article  Google Scholar 

  26. Calin GA, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9. doi:10.1073/pnas.242606799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.

    CAS  PubMed  Google Scholar 

  28. Meng F, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130:2113–29. doi:10.1053/j.gastro.2006.02.057.

    Article  CAS  PubMed  Google Scholar 

  29. Johnson SM, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47. doi:10.1016/j.cell.2005.01.014.

    Article  CAS  PubMed  Google Scholar 

  30. Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet. 2007;16(Spec No 1):R106–13. doi:10.1093/hmg/ddm056.

    Article  CAS  PubMed  Google Scholar 

  31. Marques AC, Ponting CP. Intergenic lncRNAs and the evolution of gene expression. Curr Opin Genet Dev. 2014;27:48–53. doi:10.1016/j.gde.2014.03.009.

    Article  CAS  PubMed  Google Scholar 

  32. White NM, Canbanski CR, Silva-Fisher JM, Dang HX, Ramaswamy G, Maher CA. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol. 2014;15(8):429.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic non-coding RNAs. PLoS Genet. 2013;9, e1003569. doi:10.1371/journal.pgen.1003569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hung T, et al. Extensive and coordinated transcription of non-coding RNAs within cell-cycle promoters. Nat Genet. 2011;43:621–9. doi:10.1038/ng.848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iacobucci I, et al. A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia. Leuk Res. 2011;35:1052–9. doi:10.1016/j.leukres.2011.02.020.

    Article  CAS  PubMed  Google Scholar 

  36. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long non-coding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell. 2011;44:667–78. doi:10.1016/j.molcel.2011.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Beckedorff FC, et al. The intronic long non-coding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet. 2013;9, e1003705. doi:10.1371/journal.pgen.1003705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bertozzi D, et al. Characterization of novel antisense HIF-1α transcripts in human cancers. Cell Cycle. 2014;10:3189–97. doi:10.4161/cc.10.18.17183.

    Article  CAS  Google Scholar 

  39. Leygue E. Steroid receptor RNA activator (SRA1): unusual bifaceted gene products with suspected relevance to breast cancer. Nucl Recept Signal. 2007;5, e006. doi:10.1621/nrs.05006.

    PubMed  PubMed Central  Google Scholar 

  40. Georges St Laurent DS, Tackett MR, Yang Z, Eremina T, Wahlestedt C, Urcuqui-Inchima S, Seilheimer B, McCaffrey TA, Kapranov P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics. 2012;13:504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Memczak S, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8. doi:10.1038/nature11928.

    Article  CAS  PubMed  Google Scholar 

  42. Barnhill LM, et al. High expression of CAI2, a 9p21-embedded long non-coding RNA, contributes to advanced-stage neuroblastoma. Cancer Res. 2014;74:3753–63. doi:10.1158/0008-5472.CAN-13-3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Y, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4. doi:10.1038/cr.2015.82.

    Article  CAS  PubMed  Google Scholar 

  44. Li L, et al. The diagnostic efficacy and biological effects of microRNA-29b for colon cancer. Technol Cancer Res Treat. 2015. doi:10.1177/1533034615604797.

    PubMed Central  Google Scholar 

  45. Valeri N, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25:469–83. doi:10.1016/j.ccr.2014.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kunsbaeva GB, Gilyazova IR, Pavlov VN, Khusnutdinova EK. The role of miRNAs in the development of prostate cancer. Russ J Genet. 2015;51:627–41. doi:10.1134/s102279541507008x.

    Article  CAS  Google Scholar 

  47. Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61. doi:10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ambs S, et al. Genomic profiling of microRNA and mRNA reveals deregulated microRNA expression in prostate cancer. Cancer Res. 2008;68:6162–70. doi:10.1158/0008-5472.CAN-08-0144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martens-Uzunova ES, et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene. 2012;31:978–91. doi:http://www.nature.com/onc/journal/v31/n8/suppinfo/onc2011304s1.html.

    Article  CAS  PubMed  Google Scholar 

  50. Larne O, et al. miQ—A novel microRNA based diagnostic and prognostic tool for prostate cancer. Int J Cancer. 2013;132:2867–75. doi:10.1002/ijc.27973.

    Article  CAS  PubMed  Google Scholar 

  51. Moltzahn F, et al. Microfluidic based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in sera of prostate cancer patients. Cancer Res. 2011;71:550–60. doi:10.1158/0008-5472.CAN-10-1229.

    Article  CAS  PubMed  Google Scholar 

  52. Bryant RJ, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106:768–74. doi:10.1038/bjc.2011.595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Srivastava A, et al. MicroRNA profiling in prostate cancer – the diagnostic potential of urinary miR-205 and miR-214. PLoS ONE. 2013;8, e76994. doi:10.1371/journal.pone.0076994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haj-Ahmad TA, Abdalla MAK, Haj-Ahmad Y. Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer. 2014;5:182–91. doi:10.7150/jca.6799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schaefer A, et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer. 2010;126:1166–76. doi:10.1002/ijc.24827.

    CAS  PubMed  Google Scholar 

  56. Samantarrai D, Dash S, Chhetri B, Mallick B. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol Cancer Res. 2013;11:315–28. doi:10.1158/1541-7786.mcr-12-0649.

    Article  CAS  PubMed  Google Scholar 

  57. Rasheed SAK, et al. MicroRNA-31 controls G protein alpha-13 (GNA13) expression and cell invasion in breast cancer cells. Mol Cancer. 2015;14:67. doi:10.1186/s12943-015-0337-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zheng H-B, Zheng X-G, Liu B-P. miRNA-101 inhibits ovarian cancer cells proliferation and invasion by down-regulating expression of SOCS-2. Int J Clin Exp Med. 2015;8:20263–70.

    PubMed  PubMed Central  Google Scholar 

  59. Wilczynski M, Danielska J, Dzieniecka M, Malinowski A. The role of miRNA in endometrial cancer in the context of miRNA 205. Ginekol Pol. 2015;86:856–61.

    PubMed  Google Scholar 

  60. Chen S, Sun K-X, Liu B-L, Zong Z-H, Zhao Y. MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer. 2016;15:11. doi:10.1186/s12943-016-0496-4.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lukiw WJ, Cui JG, Li YY, Culicchia F. Up-regulation of micro-RNA-221 (miRNA-221; chr Xp11.3) and caspase-3 accompanies down-regulation of the survivin-1 homolog BIRC1 (NAIP) in glioblastoma multiforme (GBM). J Neuro-Oncol. 2009;91:27–32. doi:10.1007/s11060-008-9688-0.

    Article  CAS  Google Scholar 

  62. Li W, et al. miR-124 Acts as a tumor suppressor in glioblastoma via the inhibition of signal transducer and activator of transcription 3. Mol Neurobiol. 2016. doi:10.1007/s12035-016-9852-z.

    Google Scholar 

  63. Ji WG et al. miRNA-155 modulates the malignant biological characteristics of NK/T-cell lymphoma cells by targeting FOXO3a gene. J Huazhong Uni Sci Technol. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban, 2014;34:882–88. doi:10.1007/s11596-014-1368-z.

    Google Scholar 

  64. Roisman A, et al. SOXC And MiR17-92 gene expression profiling defines two subgroups with different clinical outcome in mantle cell lymphoma. Genes Chromosomes Cancer. 2016. doi:10.1002/gcc.22355.

    PubMed  Google Scholar 

  65. Li C, Xu N, Li Y-Q, Wang Y, Zhu Z-T. Inhibition of SW620 human colon cancer cells by up-regulating miRNA-145. World J Gastroenterol. 2016;22:2771–8. doi:10.3748/wjg.v22.i9.2771.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yiu AJ, Yiu CY. Biomarkers in colorectal cancer. Anticancer Res. 2016;36:1093–102.

    PubMed  Google Scholar 

  67. Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p up-regulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer. 2016;16:108. doi:10.1186/s12885-016-2146-z.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mutalib NS, et al. MicroRNAs and lymph node metastasis in papillary thyroid cancers. Asian Pac J Cancer Prev. 2016;17:25–35.

    Article  PubMed  Google Scholar 

  69. Volinia S, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61. doi:10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lowery AJ, Miller N, McNeill RE, Kerin MJ. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res. 2008;14:360–5. doi:10.1158/1078-0432.ccr-07-0992.

    Article  CAS  PubMed  Google Scholar 

  71. Lu J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8. doi:10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  72. Cannistraci A, Di Pace AL, De Maria R, Bonci D. MicroRNA as new tools for prostate cancer risk assessment and therapeutic intervention: results from clinical data set and patients’ samples. BioMed Res Int. 2014;2014:146170. doi:10.1155/2014/146170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Tsuchiya N, et al. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;21:10573–83. doi:10.3748/wjg.v21.i37.10573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou J, et al. Plasma microRNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin Oncol. 2011;29:4781–8. doi:10.1200/JCO.2011.38.2697.

    Article  CAS  PubMed  Google Scholar 

  75. Forner A. Hepatocellular carcinoma surveillance with miRNAs. Lancet Oncol. 2015;16:743–5. doi:10.1016/s1470-2045(15)00014-5.

    Article  PubMed  Google Scholar 

  76. Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64:311–36. doi:10.3322/caac.21244.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang J, et al. Elevated expression of miR-210 predicts poor survival of cancer patients: a systematic review and meta-analysis. PLoS ONE. 2014;9, e89223. doi:10.1371/journal.pone.0089223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wang B, Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J Cancer Res Clin Oncol. 2012;138:1659–66. doi:10.1007/s00432-012-1244-9.

    Article  CAS  PubMed  Google Scholar 

  79. Eichelser C, Flesch-Janys D, Chang-Claude J, Pantel K, Schwarzenbach H. Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem. 2013;59:1489–96. doi:10.1373/clinchem.2013.205161.

    Article  CAS  PubMed  Google Scholar 

  80. Cheng H, et al. Circulating plasma miR-141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS ONE. 2011;6, e17745. doi:10.1371/journal.pone.0017745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huang Z, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. Int J Cancer. 2010;127:118–26. doi:10.1002/ijc.25007.

    Article  CAS  PubMed  Google Scholar 

  82. Pu XX, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80. doi:10.1111/j.1440-1746.2010.06417.x.

    Article  CAS  PubMed  Google Scholar 

  83. Toiyama Y, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259:735–43. doi:10.1097/SLA.0b013e3182a6909d.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang J, Du Y, Liu X, Cho WC, Yang Y. MicroRNAs as regulator of signaling networks in metastatic colon cancer. BioMed Res Int. 2015;2015:823620. doi:10.1155/2015/823620.

    PubMed  PubMed Central  Google Scholar 

  85. Zhu C, et al. A five-microRNA panel in plasma was identified as potential biomarker for early detection of gastric cancer. Br J Cancer. 2014;110:2291–9. doi:10.1038/bjc.2014.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang Y-K, Yu J-C. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol. 2015;21:9863–86. doi:10.3748/wjg.v21.i34.9863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang Y-C, Xu Z, Zhang T-F, Wang Y-L. Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. World J Gastroenterol. 2015;21:9853–62. doi:10.3748/wjg.v21.i34.9853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meng W, et al. MicroRNA-31 predicts the presence of lymph node metastases and survival in lung adenocarcinoma patients. Clin Cancer Res. 2013;19:5423–33. doi:10.1158/1078-0432.CCR-1113-0320.

    Article  CAS  PubMed  Google Scholar 

  89. Guz M, et al. MicroRNAs-role in lung cancer. Dis Markers. 2014;2014:218169. doi:10.1155/2014/218169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Rodriguez M, et al. Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer. 2014;53:713–24. doi:10.1002/gcc.22181.

    CAS  PubMed  Google Scholar 

  91. Yang C, et al. Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 2013;132:116–27. doi:10.1002/ijc.27657.

    Article  CAS  PubMed  Google Scholar 

  92. Westermann AM, et al. Serum microRNAs as biomarkers in patients undergoing prostate biopsy: results from a prospective multi-center study. Anticancer Res. 2014;34:665–9.

    CAS  PubMed  Google Scholar 

  93. Zheng H, et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS ONE. 2013;8, e77853. doi:10.1371/journal.pone.0077853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long non-coding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105:716–21. doi:10.1073/pnas.0706729105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maass PG, Luft FC, Bahring S. Long non-coding RNA in health and disease. J Mol Med. 2014;92:337–46. doi:10.1007/s00109-014-1131-8.

    Article  CAS  PubMed  Google Scholar 

  96. Yarmishyn AA, Kurochkin IV. Long non-coding RNAs: a potential novel class of cancer biomarkers. Front Genet. 2015;6:145. doi:10.3389/fgene.2015.00145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Bussemakers MJ, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59:5975–9.

    CAS  PubMed  Google Scholar 

  98. Petrovics G, et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene. 2004;23:605–11. doi:10.1038/sj.onc.1207069.

    Article  CAS  PubMed  Google Scholar 

  99. Chung S, et al. Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci. 2011;102:245–52. doi:10.1111/j.1349-7006.2010.01737.x.

    Article  CAS  PubMed  Google Scholar 

  100. Ylipaa A, et al. Transcriptome sequencing reveals PCAT5 as a novel ERG-regulated long non-coding RNA in prostate cancer. Cancer Res. 2015;75:4026–31. doi:10.1158/0008-5472.CAN-15-0217.

    Article  PubMed  CAS  Google Scholar 

  101. Crea F, et al. Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget. 2014;5:764–74. doi:10.18632/oncotarget.1769.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wei G, et al. Transcriptome profiling of esophageal squamous cell carcinoma reveals a long non-coding RNA acting as a tumor suppressor. Oncotarget. 2015;6:17065–80. doi:10.18632/oncotarget.4185.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li X, et al. Long non-coding RNA HOTAIR, a driver of malignancy, predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cell carcinoma. Br J Cancer. 2013;109:2266–78. doi:10.1038/bjc.2013.548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Li W, et al. Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells. Gastroenterology. 2014;146(1714–1726), e1715. doi:10.1053/j.gastro.2014.03.002.

    Google Scholar 

  105. Zhang X, et al. Elevated expression of CCAT2 is associated with poor prognosis in esophageal squamous cell carcinoma. J Surg Oncol. 2015;111:834–9. doi:10.1002/jso.23888.

    Article  CAS  PubMed  Google Scholar 

  106. Nie Y, et al. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival. Cancer Sci. 2013;104:458–64. doi:10.1111/cas.12092.

    Article  CAS  PubMed  Google Scholar 

  107. Chen Z, et al. MiRNA expression profile reveals a prognostic signature for esophageal squamous cell carcinoma. Cancer Lett. 2014;350:34–42. doi:10.1016/j.canlet.2014.04.013.

    Article  CAS  PubMed  Google Scholar 

  108. Yang F, et al. Long non-coding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013;139:437–45. doi:10.1007/s00432-012-1324-x.

    Article  CAS  PubMed  Google Scholar 

  109. Mei D, et al. Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med Oncol. 2013;30:709. doi:10.1007/s12032-013-0709-2.

    Article  PubMed  CAS  Google Scholar 

  110. Sana J, Faltejskova P, Svoboda M, Slaby O. Novel classes of non-coding RNAs and cancer. J Transl Med. 2012;10:103. doi:10.1186/1479-5876-10-103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kogo R, et al. Long non-coding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6. doi:10.1158/0008-5472.can-11-1021.

    Article  CAS  PubMed  Google Scholar 

  112. Panzitt K, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as non-coding RNA. Gastroenterology. 2007;132:330–42. doi:10.1053/j.gastro.2006.08.026.

    Article  CAS  PubMed  Google Scholar 

  113. Gutschner T, et al. The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73:1180–9. doi:10.1158/0008-5472.can-12-2850.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang XQ, Leung GK. Long non-coding RNAs in glioma: functional roles and clinical perspectives. Neurochem Int. 2014;77:78–85. doi:10.1016/j.neuint.2014.05.008.

    Article  PubMed  CAS  Google Scholar 

  115. Chisholm KM, et al. Detection of long non-coding RNA in archival tissue: correlation with polycomb protein expression in primary and metastatic breast carcinoma. PLoS ONE. 2012;7, e47998. doi:10.1371/journal.pone.0047998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang J, et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis. 2014;5, e1008. doi:10.1038/cddis.2013.541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Qiu JJ, et al. Overexpression of long non-coding RNA HOTAIR predicts poor patient prognosis and promotes tumor metastasis in epithelial ovarian cancer. Gynecol Oncol. 2014;134:121–8. doi:10.1016/j.ygyno.2014.03.556.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Q, Su M, Lu G, Wang J. The complexity of bladder cancer: long non-coding RNAs are on the stage. Mol Cancer. 2013;12:101. doi:10.1186/1476-4598-12-101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wang L, et al. Genome-wide screening and identification of long non-coding RNAs and their interaction with protein coding RNAs in bladder urothelial cell carcinoma. Cancer Lett. 2014;349:77–86. doi:10.1016/j.canlet.2014.03.033.

    Article  CAS  PubMed  Google Scholar 

  120. Cao Q, Wang N, Qi J, Gu Z, Shen H. Long non-coding RNAGAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (CC motif) ligand 1 expression. Mol Med Rep. 2016;13:27–34. doi:10.3892/mmr.2015.4503.

    CAS  PubMed  Google Scholar 

  121. Ploussard G, et al. Prostate cancer antigen 3 score accurately predicts tumour volume and might help in selecting prostate cancer patients for active surveillance. Eur Urol. 2011;59:422–9. doi:10.1016/j.eururo.2010.11.044.

    Article  PubMed  Google Scholar 

  122. Walsh AL, Tuzova AV, Bolton EM, Lynch TH, Perry AS. Long non-coding RNAs and prostate carcinogenesis: the missing ‘linc’? Trends Mol Med. 2014;20:428–36. doi:10.1016/j.molmed.2014.03.005.

    Article  CAS  PubMed  Google Scholar 

  123. Ifere GO, Ananaba GA. Prostate cancer gene expression marker 1 (PCGEM1): a patented prostate- specific non-coding gene and regulator of prostate cancer progression. Recent Pat DNA Gene Seq. 2009;3:151–63.

    Article  CAS  PubMed  Google Scholar 

  124. Li W, et al. Suppressing H19 modulates tumorigenicity and stemness in U251 and U87MG glioma cells. Cell Mol Neurobiol. 2016. doi:10.1007/s10571-015-0320-5.

    Google Scholar 

  125. Leucci E, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518–22. doi:10.1038/nature17161.

    Article  CAS  PubMed  Google Scholar 

  126. Gibb EA, et al. Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions. Oral Oncol. 2011;47:1055–61. doi:10.1016/j.oraloncology.2011.07.008.

    Article  CAS  PubMed  Google Scholar 

  127. Gao W, Chan JY, Wong TS. Differential expression of long non-coding RNA in primary and recurrent nasopharyngeal carcinoma. Biomed Res Int. 2014;2014:404567. doi:10.1155/2014/404567.

    PubMed  PubMed Central  Google Scholar 

  128. Meseure D, Drak Alsibai K, Nicolas A, Bieche I, Morillon A. Long non-coding RNAs as new architects in cancer epigenetics, prognostic biomarkers, and potential therapeutic targets. Biomed Res Int. 2015;2015:320214. doi:10.1155/2015/320214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301. doi:10.1016/j.ymeth.2010.01.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jemal A, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49. doi:10.3322/caac.20006.

    Article  PubMed  Google Scholar 

  131. Chen X, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006. doi:10.1038/cr.2008.282.

    Article  CAS  PubMed  Google Scholar 

  132. Bianchi F, et al. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med. 2011;3:495–503. doi:10.1002/emmm.201100154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zheng D, et al. Plasma microRNAs as novel biomarkers for early detection of lung cancer. Int J Clin Exp Pathol. 2011;4:575–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Le HB, et al. Evaluation of dynamic change of serum miR-21 and miR-24 in pre- and post-operative lung carcinoma patients. Med Oncol. 2012;29:3190–7. doi:10.1007/s12032-012-0303-z.

    Article  CAS  PubMed  Google Scholar 

  135. Shen J, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Investig. 2011;91:579–87. doi:10.1038/labinvest.2010.194.

    Article  CAS  PubMed  Google Scholar 

  136. Wei J, et al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer. Chin J Cancer. 2011;30:407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Abd-El-Fattah AA, Sadik NA, Shaker OG, Aboulftouh ML. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67:875–84. doi:10.1007/s12013-013-9575-y.

    Article  CAS  PubMed  Google Scholar 

  138. Hennessey PT, et al. Serum microRNA biomarkers for detection of non-small cell lung cancer. PLoS ONE. 2012;7, e32307. doi:10.1371/journal.pone.0032307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen X, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer. 2012;130:1620–8. doi:10.1002/ijc.26177.

    Article  CAS  PubMed  Google Scholar 

  140. Boeri M, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc Natl Acad Sci U S A. 2011;108:3713–8. doi:10.1073/pnas.1100048108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121:3786–8. doi:10.1172/JCI60534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhu W, Qin W, Atasoy U, Sauter ER. Circulating microRNAs in breast cancer and healthy subjects. BMC Res Notes. 2009;2:89. doi:10.1186/1756-0500-2-89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Heneghan HM, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251:499–505.

    Article  PubMed  Google Scholar 

  144. Wu Q, et al. Next-generation sequencing of microRNAs for breast cancer detection. J Biomed Biotechnol. 2011;2011:597145. doi:10.1155/2011/597145.

    PubMed  PubMed Central  Google Scholar 

  145. Asaga S, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57:84–91. doi:10.1373/clinchem.2010.151845.

    Article  CAS  PubMed  Google Scholar 

  146. Hu Z, et al. Serum microRNA profiling and breast cancer risk: the use of miR-484/191 as endogenous controls. Carcinogenesis. 2012;33:828–34. doi:10.1093/carcin/bgs030.

    Article  CAS  PubMed  Google Scholar 

  147. Mar-Aguilar F, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers. 2013;34:163–9. doi:10.3233/DMA-120957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McDermott AM, et al. Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS ONE. 2014;9, e87032. doi:10.1371/journal.pone.0087032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Schwarzenbach H, Milde-Langosch K, Steinbach B, Muller V, Pantel K. Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat. 2012;134:933–41. doi:10.1007/s10549-012-1988-6.

    Article  CAS  PubMed  Google Scholar 

  150. Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013;34:455–62. doi:10.1007/s13277-012-0570-5.

    Article  CAS  PubMed  Google Scholar 

  151. Zhao R, et al. Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie. 2011;34:675–80.

    Article  CAS  PubMed  Google Scholar 

  152. Rao X, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30:1082–97. doi:10.1038/onc.2010.487.

    Article  CAS  PubMed  Google Scholar 

  153. Wang H, et al. MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE. 2012;7, e34210. doi:10.1371/journal.pone.0034210.g001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jung EJ, et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer. 2012;118:2603–14. doi:10.1002/cncr.26565.

    Article  CAS  PubMed  Google Scholar 

  155. Enache LS, et al. Circulating RNA molecules as biomarkers in liver disease. Int J Mol Sci. 2014;15:17644–66. doi:10.3390/ijms151017644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li LM, et al. Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res. 2010;70:9798–807. doi:10.1158/0008-5472.CAN-10-1001.

    Article  CAS  PubMed  Google Scholar 

  157. Xu J, et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol Carcinog. 2011;50:136–42. doi:10.1002/mc.20712.

    Article  CAS  PubMed  Google Scholar 

  158. Li J, Wang Y, Yu W, Chen J, Luo J. Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun. 2011;406:70–3. doi:10.1016/j.bbrc.2011.01.111.

    Article  CAS  PubMed  Google Scholar 

  159. Qu KZ, Zhang K, Li H, Afdhal NH, Albitar M. Circulating microRNAs as biomarkers for hepatocellular carcinoma. J Clin Gastroenterol. 2011;45:355–60.

    Article  CAS  PubMed  Google Scholar 

  160. Liu AM, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open. 2012;2, e000825. doi:10.1136/bmjopen-2012-000825.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol. 2012;56:1371–83. doi:10.1016/j.jhep.2011.11.026.

    Article  CAS  PubMed  Google Scholar 

  162. Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev. 2015;81:75–93. doi:10.1016/j.addr.2014.09.001.

    Article  CAS  PubMed  Google Scholar 

  163. Tsujiura M, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–9. doi:10.1038/sj.bjc.6605608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang M, et al. Circulating miR-17-5p and miR-20a: molecular markers for gastric cancer. Mol Med Rep. 2012;5:1514–20. doi:10.3892/mmr.2012.828.

    CAS  PubMed  Google Scholar 

  165. Zheng Y, et al. MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomarkers. 2011;10:71–7. doi:10.3233/CBM-2011-0231.

    CAS  PubMed  Google Scholar 

  166. Kim SY, et al. Validation of circulating miRNA biomarkers for predicting lymph node metastasis in gastric cancer. J Mol Diagn. 2013;15:661–9. doi:10.1016/j.jmoldx.2013.04.004.

    Article  PubMed  CAS  Google Scholar 

  167. Komatsu S, et al. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013;33:271–6.

    PubMed  Google Scholar 

  168. Li BS, et al. Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS ONE. 2012;7, e41629. doi:10.1371/journal.pone.0041629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol. 2015;21:9863–86. doi:10.3748/wjg.v21.i34.9863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ng EK, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81. doi:10.1136/gut.2008.167817.

    Article  CAS  PubMed  Google Scholar 

  171. Wang LG, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver metastasis. Cancer Epidemiol. 2012;36:e61–7. doi:10.1016/j.canep.2011.05.002.

    Article  CAS  PubMed  Google Scholar 

  172. Wang J, et al. Identification of a circulating microRNA signature for colorectal cancer detection. PLoS ONE. 2014;9, e87451. doi:10.1371/journal.pone.0087451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Kanaan Z, et al. Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 2012;256:544–51. doi:10.1097/SLA.0b013e318265bd6f.

    Article  PubMed  Google Scholar 

  174. Toiyama Y, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259:735–43. doi:10.1097/SLA.0b013e3182a6909d.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang Q, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS ONE. 2012;7, e44398. doi:10.1371/journal.pone.0044398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang J, et al. Circulating microRNA expressions in colorectal cancer as predictors of response to chemotherapy. Anticancer Drugs. 2014;25:346–52.

    Article  CAS  PubMed  Google Scholar 

  177. Lawrie CH. MicroRNAs in hematological malignancies. Blood Rev. 2013;27:143–54. doi:10.1016/j.blre.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  178. Lawrie CH, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5. doi:10.1111/j.1365-2141.2008.07077.x.

    Article  PubMed  Google Scholar 

  179. Chen W, et al. Clinical significance and detection of microRNA-21 in serum of patients with diffuse large B-cell lymphoma in Chinese population. Eur J Haematol. 2014;92:407–12. doi:10.1111/ejh.12263.

    Article  CAS  PubMed  Google Scholar 

  180. Fayyad-Kazan H, et al. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med. 2013;11:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Moussay E, et al. MicroRNA as biomarkers and regulators in B-cell chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2011;108:6573–8. doi:10.1073/pnas.1019557108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Han YC, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp Med. 2010;207:475–89. doi:10.1084/jem.20090831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Felli N, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005;102:18081–6. doi:10.1073/pnas.0506216102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pekarsky Y, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66:11590–3. doi:10.1158/0008-5472.CAN-06-3613.

    Article  CAS  PubMed  Google Scholar 

  185. Chen RW, et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 2008;112:822–9. doi:10.1182/blood-2008-03-142182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Xiao C, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol. 2008;9:405–14. doi:10.1038/ni1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yamanaka Y, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114:3265–75. doi:10.1182/blood-2009-06-222794.

    Article  CAS  PubMed  Google Scholar 

  188. Wang J, Song YX, Wang ZN. Non-coding RNAs in gastric cancer. Gene. 2015;560:1–8. doi:10.1016/j.gene.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  189. Cui L, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem. 2011;44:1050–7. doi:10.1016/j.clinbiochem.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  190. Law PT, et al. Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol. 2013;58:1165–73. doi:10.1016/j.jhep.2013.01.032.

    Article  CAS  PubMed  Google Scholar 

  191. Liao J, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198. doi:10.1186/1476-4598-9-198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Mei YP, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012;31:2794–804. doi:10.1038/onc.2011.449.

    Article  CAS  PubMed  Google Scholar 

  193. Gee HE, et al. The small-nucleolar RNAs commonly used for microRNA normalisation correlate with tumour pathology and prognosis. Br J Cancer. 2011;104:1168–77. doi:10.1038/sj.bjc.6606076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Appaiah HN, et al. Persistent up-regulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients. Breast Cancer Res. 2011;13:R86. doi:10.1186/bcr2943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hansen TB, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8. doi:10.1038/nature11993.

    Article  CAS  PubMed  Google Scholar 

  196. Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet. 2013;4:307. doi:10.3389/fgene.2013.00307.

    PubMed  PubMed Central  Google Scholar 

  197. Koh W, et al. Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci. 2014;111:7361–6. doi:10.1073/pnas.1405528111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Memczak S, Papavasileiou P, Peters O, Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS ONE. 2015;10, e0141214. doi:10.1371/journal.pone.0141214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Rybak-Wolf A, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2015;58:870–85. doi:10.1016/j.molcel.2015.03.027.

    Article  CAS  PubMed  Google Scholar 

  200. Li P, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta. 2015;444:132–6. doi:10.1016/j.cca.2015.02.018.

    Article  CAS  PubMed  Google Scholar 

  201. Qu S, et al. Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma. Genomics Data. 2015;5:385–7. doi:10.1016/j.gdata.2015.07.017.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Conde-Vancells J, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008;7:5157–66. doi:10.1021/pr8004887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Street JM, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10:5. doi:10.1186/1479-5876-10-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Gourzones C, et al. Extra-cellular release and blood diffusion of BART viral micro-RNAs produced by EBV-infected nasopharyngeal carcinoma cells. Virol J. 2010;7:271. doi:10.1186/1743-422X-7-271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Mathivanan S, Simpson RJ. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics. 2009;9:4997–5000. doi:10.1002/pmic.200900351.

    Article  CAS  PubMed  Google Scholar 

  206. Samsonov R, et al. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic. Prostate. 2015. doi:10.1002/pros.23101.

    PubMed  Google Scholar 

  207. Cazzoli R, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013;8:1156–62. doi:10.1097/JTO.0b013e318299ac32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Singh R, Pochampally R, Watabe K, Lu ZH, Mo YY. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol Cancer. 2014;13:256. doi:10.1186/1476-4598-13-256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Momen-Heravi F, et al. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261. doi:10.1186/s12967-015-0623-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Chen C, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33, e179. doi:10.1093/nar/gni178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Conte D, et al. Novel method to detect microRNAs using chip-based QuantStudio 3D digital PCR. BMC Genomics. 2015;16:849. doi:10.1186/s12864-015-2097-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Matullo G, Naccarati A, Pardini B. microRNA expression profiling in bladder cancer: the challenge of Next Generation Sequencing in tissues and biofluids. Int J Cancer. 2015. doi:10.1002/ijc.29895.

    PubMed  Google Scholar 

  213. Mestdagh P et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study (vol 11, pg 809, 2014). Nat Methods, 2014;11:971–971

    Google Scholar 

  214. Kalra H, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13:3354–64. doi:10.1002/pmic.201300282.

    Article  CAS  PubMed  Google Scholar 

  215. Park NJ, et al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15:5473–7. doi:10.1158/1078-0432.CCR-09-0736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Xie Z, et al. Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS ONE. 2013;8, e57502. doi:10.1371/journal.pone.0057502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Xie ZJ, et al. Salivary microRNAs show potential as a noninvasive biomarker for detecting resectable pancreatic cancer. Cancer Prev Res. 2015;8:165–73. doi:10.1158/1940-6207.CAPR-14-0192.

    Article  CAS  Google Scholar 

  218. Kok JB. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62(9):2695–8.

    PubMed  Google Scholar 

  219. van Gils MP, et al. The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin Cancer Res. 2007;13:939–43. doi:10.1158/1078-0432.CCR-06-2679.

    Article  PubMed  Google Scholar 

  220. Yamada Y, et al. MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 2011;102:522–9. doi:10.1111/j.1349-7006.2010.01816.x.

    Article  CAS  PubMed  Google Scholar 

  221. Lewis H, et al. miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration. Cell Cycle. 2014;13:227–39. doi:10.4161/cc.26984.

    Article  CAS  PubMed  Google Scholar 

  222. Hanke M, et al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28:655–61. doi:10.1016/j.urolonc.2009.01.027.

    Article  CAS  PubMed  Google Scholar 

  223. Ahmed FE, et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics. 2009;6:281–95.

    CAS  PubMed  Google Scholar 

  224. Yantiss RK, et al. Clinical, pathologic, and molecular features of early-onset colorectal carcinoma. Am J Surg Pathol. 2009;33:572–82. doi:10.1097/PAS.0b013e31818afd6b.

    Article  PubMed  Google Scholar 

  225. Koga Y, et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila). 2010;3:1435–42. doi:10.1158/1940-6207.CAPR-10-0036.

    Article  Google Scholar 

  226. Kalimutho M, et al. Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. J Gastroenterol. 2011;46:1391–402. doi:10.1007/s00535-011-0456-0.

    Article  CAS  PubMed  Google Scholar 

  227. Link A, Becker V, Goel A, Wex T, Malfertheiner P. Feasibility of fecal microRNAs as novel biomarkers for pancreatic cancer. PLoS ONE. 2012;7, e42933. doi:10.1371/journal.pone.0042933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-Sheng Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Zeng, MS. (2016). Noncoding RNAs in Cancer Diagnosis. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_15

Download citation

Publish with us

Policies and ethics