Skip to main content

Viral Noncoding RNAs in Cancer Biology

  • Chapter
  • First Online:
The Long and Short Non-coding RNAs in Cancer Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

Over 12 % of all human cancers are caused by oncoviruses, primarily including Epstein–Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B and C viruses (HBV and HCV, respectively), and Kaposi’s sarcoma herpesvirus (KSHV). In addition to viral oncoproteins, a variety of noncoding RNAs (ncRNAs) produced by oncoviruses have been recognized as important cofactors that contribute to the oncogenic events. In this chapter, we will focus on the recent understanding of the long and short noncoding RNAs, as well as microRNAs of the viruses, and discuss their roles in the biology of multistep oncogenesis mediated by established human oncoviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng ZM. Viral oncogenes, non-coding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci. 2010;6(7):730–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.

    Article  CAS  PubMed  Google Scholar 

  3. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  4. Iwakiri D. Epstein-Barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers (Basel). 2014;6(3):1615–30.

    Article  CAS  Google Scholar 

  5. Sun R, Lin SF, Gradoville L, Miller G. Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A. 1996;21:11883–8.

    Article  Google Scholar 

  6. Zhong W, Ganem D. Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). J Virol. 1997;71(2):1207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee SI, Murthy SC, Trimble JJ, et al. Four novel U RNAs are encoded by a herpesvirus. Cell. 1988;54(5):599–607.

    Article  CAS  PubMed  Google Scholar 

  8. Mathews MB, Shenk T. Adenovirus virus-associated RNA and translation control. J Virol. 1991;65(11):5657–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lerner MR, Andrews NC, Miller G, Steitz JA. Two small RNAs encoded by Epstein-Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1981;78(2):805–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rosa MD, Gottlieb E, Lerner MR, Steitz JA. Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acid and the adenovirus-associated ribonucleic acids VAI and VAII. Mol Cell Biol. 1981;1(9):785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwemmle M, Clemens MJ, Hilse K, et al. Localization of Epstein-Barr virus-encoded RNAs EBER-1 and EBER-2 in interphase and mitotic Burkitt lymphoma cells. Proc Natl Acad Sci U S A. 1992;89(21):10292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fok V, Friend K, Steitz JA. Epstein-Barr virus non-coding RNAs are confined to the nucleus, whereas their partner, the human La protein, undergoes nucleocytoplasmic shuttling. J Cell Biol. 2006;173(3):319–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med. 2009;206(10):2091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clarke PA, Schwemmle M, Schickinger J, et al. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res. 1991;19(2):243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruf IK, Lackey KA, Warudkar S, Sample JT. Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. J Virol. 2005;79(23):14562–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Houmani JL, Davis CI, Ruf IK. Growth-promoting properties of Epstein-Barr virus EBER-1 RNA correlate with ribosomal protein L22 binding. J Virol. 2009;83(19):9844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee N, Pimienta G, Steitz JA. AUF1/hnRNP D is a novel protein partner of the EBER1 non-coding RNA of Epstein-Barr virus. RNA. 2012;18(11):2073–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee N, Moss WN, Yario TA, Steitz JA. EBV non-coding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell. 2014;160(4):607–18.

    Article  CAS  Google Scholar 

  19. Gregorovic G, Boulden EA, Bosshard R, et al. Epstein-Barr viruses deficient in EBER RNAs give higher LMP2 RNA expression in lymphoblastoid cell lines and efficiently establish persistent infection in humanized mice. J Virol. 2015;89(22):11711–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Komano J, Maruo S, Kurozumi K, et al. Oncogenic role of Epstein-Barr virus-encoded RNAs in Burkitt’s lymphoma cell line Akata. J Virol. 1997;73(12):9827–31.

    Google Scholar 

  21. Yajima M, Kanda T, Takada K. Critical role of Epstein-Barr Virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol. 2005;79(7):4298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Repellin CE, Tsimbouri PM, Philbey AW, Wilson JB. Lymphoid hyperplasia and lymphoma in transgenic mice expressing the small non-coding RNA, EBER1 of Epstein-Barr virus. PLoS ONE. 2010;5(2), e9092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Swaminathan S, Tomkinson B, Kieff E. Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Natl Acad Sci U S A. 1991;88(4):1546–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gregorovic G, Bosshard R, Karstegl CE, et al. Cellular gene expression that correlates with EBER expression in Epstein-Barr Virus-infected lymphoblastoid cell lines. J Virol. 2011;85(7):3535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wong HL, Wang X, Chang RC, et al. Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress. Mol Carcinog. 2005;44(2):92–101.

    Article  CAS  PubMed  Google Scholar 

  26. Yoshizaki T, Endo K, Ren Q, et al. Oncogenic role of Epstein-Barr virus-encoded small RNAs (EBERs) in nasopharyngeal carcinoma. Auris Nasus Larynx. 2007;34(1):73–8.

    Article  PubMed  Google Scholar 

  27. Iwakiri D, Sheen TS, Chen JY, et al. Epstein-Barr virus-encoded small RNA induces insulin-like growth factor 1 and supports growth of nasopharyngeal carcinoma-derived cell lines. Oncogene. 2005;24(10):1767–73.

    Article  CAS  PubMed  Google Scholar 

  28. Samanta M, Iwakiri D, Kanda T, et al. EB virus-encoded RNAs are recognized by RIG-I and activate signaling to induce type I IFN. EMBO. 2006;25(18):4207–14.

    Article  CAS  Google Scholar 

  29. Samanta M, Iwakiri D, Takada K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene. 2008;27(30):4150–60.

    Article  CAS  PubMed  Google Scholar 

  30. Duan Y, Li Z, Cheng S, et al. Nasopharyngeal carcinoma progression is mediated by EBER-triggered inflammation via the RIG-I pathway. Cancer Lett. 2015;361(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Duan Y, Cheng S, Chen Y, et al. EBV-encoded RNA via TLR3 induces inflammation in nasopharyngeal carcinoma. Oncotarget. 2015;6(27):24291–303.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Albrecht JC, Fleckenstein B. Nucleotide sequence of HSUR 6 and HSUR 7, two small RNAs of herpesvirus saimiri. Nucleic Acids Res. 1992;20(7):1810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ensser A, Fleckenstein B. T-cell transformation and oncogenesis by gamma2-herpesviruses. Adv Cancer Res. 2005;93:91–128.

    Article  CAS  PubMed  Google Scholar 

  34. Murthy S, Kamine J, Desrosiers RC. Viral-encoded small RNAs in herpes virus saimiri induced tumors. EMBO J. 1986;5(7):1625–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Myer VE, Lee SI, Steitz JA. Viral small nuclear ribonucleoproteins bind a protein implicated in messenger RNA destabilization. Proc Natl Acad Sci U S A. 1992;89(4):1296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cook HL, Mischo HE, Steitz JA. The Herpesvirus saimiri small nuclear RNAs recruit AU-rich element-binding proteins but do not alter host AU-rich element-containing mRNA levels in virally transformed T cells. Mol Cell Biol. 2004;24(10):4522–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cook HL, Lytle JR, Mischo HE, et al. Small nuclear RNAs encoded by Herpesvirus saimiri up-regulate the expression of genes linked to T cell activation in virally transformed T cells. Curr Biol. 2005;15(10):974–9.

    Article  CAS  PubMed  Google Scholar 

  38. Cazalla D, Yario T, Steitz JA. Down-regulation of a host microRNA by a Herpesvirus saimiri non-coding RNA. Science. 2010;328(5985):1563–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tycowski KT, Guo YE, Lee N, et al. Viral non-coding RNAs: more surprises. Genes Dev. 2015;29(6):567–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Libri V, Helwak A, Miesen P, et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci U S A. 2012;109(1):279–84.

    Article  CAS  PubMed  Google Scholar 

  41. Marcinowski L, Tanguy M, Krmpotic A, et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 2012;8(2), e1002510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo YE, Riley KJ, Iwasaki A, Steitz JA. Alternative capture of non-coding RNAs or protein-coding genes by herpesviruses to alter host T cell function. Mol Cell. 2014;54(1):67–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Murthy SC, Trimble JJ, Desrosiers RC. Deletion mutants of herpesvirus saimiri define an open reading frame necessary for transformation. J Virol. 1989;63(8):3307–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Greenaway PJ, Wilkinson GW. Nucleotide sequence of the most abundantly transcribed early gene of human cytomegalovirus strain AD169. Virus Res. 1987;7(1):17–31.

    Article  CAS  PubMed  Google Scholar 

  45. Reeves MB, Davies AA, McSharry BP, et al. Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science. 2007;316(5829):1345–8.

    Article  CAS  PubMed  Google Scholar 

  46. Stern-Ginossar N, Weisburd B, Michalski A, et al. Decoding human cytomegalovirus. Science. 2012;338(6110):1088–93.

    Article  CAS  PubMed  Google Scholar 

  47. Ganem D. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest. 2010;120(4):939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rossetto CC, Pari GS. PAN’s Labyrinth: molecular biology of Kaposi’s sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long non-coding RNA. Viruses. 2014;6(11):4212–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossetto CC, Tarrant-Elorza M, Verma S, et al. Regulation of viral and cellular gene expression by Kaposi’s sarcoma-associated herpesvirus polyadenylated nuclear RNA. J Virol. 2013;87(10):5540–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Song MJ, Brown HJ, Wu TT, Sun R. Transcription activation of polyadenylated nuclear rna by rta in human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus. J Virol. 2001;75(7):3129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Campbell M, Kim KY, Chang PC, et al. A lytic viral long non-coding RNA modulates the function of a latent protein. J Virol. 2014;88(3):1843–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sahin BB, Patel D, Conrad NK. Kaposi’s sarcoma-associated herpesvirus ORF57 protein binds and protects a nuclear non-coding RNA from cellular RNA decay pathways. PLoS Pathog. 2010;6(3), e1000799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Conrad NK, Shu MD, Uyhazi KE, Steitz JA. Mutational analysis of a viral RNA element that counteracts rapid RNA decay by interaction with the polyadenylate tail. Proc Natl Acad Sci U S A. 2007;104(25):10412–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitton-Fry RM, DeGregorio SJ, et al. Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. 2010;330(6008):1244–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Massimelli MJ, Kang JG, Majerciak V, et al. Stability of a long non-coding viral RNA depends on a 9-nt core element at the RNA 5′ end to interact with viral ORF57 and cellular PABPC1. Int J Biol Sci. 2011;7(8):1145–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Borah S, Darricarrere N, Darnell A, et al. A viral nuclear non-coding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog. 2011;7(10), e1002300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rossetto CC, Pari GS. Kaposi’s sarcoma-associated herpesvirus non-coding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation. J Virol. 2011;85(24):13290–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rossetto CC, Pari G. KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome. PLoS Pathog. 2012;8(5), e1002680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Arias C, Weisburd B, Stern-Ginossar N, et al. KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog. 2014;10(1), e1003847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. He M, Zhang W, Bakken T, et al. Cancer angiogenesis induced by Kaposi sarcoma-associated herpesvirus is mediated by EZH2. Cancer Res. 2012;72(14):3582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Roby JA, Pijlman GP, Wilusz J, Khromykh AA. Non-coding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 2014;6(2):404–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Chapman EG, Costantino DA, Rabe JL, et al. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science. 2014;344(6181):307–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pijlman GP, Funk A, Kondratieva N, et al. A highly structured, nuclease-resistant, non-coding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4(6):579–91.

    Article  CAS  PubMed  Google Scholar 

  64. Funk A, Truong K, Nagasaki T, et al. RNA structures required for production of subgenomic flavivirus RNA. J Virol. 2010;84(21):11407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silva PA, Pereira CF, Dalebout TJ, et al. An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J Virol. 2010;84(21):11395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fan YH, Nadar M, Chen CC, et al. Small non-coding RNA modulates Japanese encephalitis virus replication and translation in trans. Virol J. 2011;8:492.

    Google Scholar 

  67. Schuessler A, Funk A, Lazear HM, et al. West Nile virus non-coding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol. 2012;86(10):5708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chang RY, Hsu TW, Chen YL, et al. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Vet Microbiol. 2013;166(1–2):11–21.

    Article  CAS  PubMed  Google Scholar 

  69. Moon SL, Anderson JR, Kumagai Y, et al. A non-coding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA. 2012;18(11):2029–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schnettler E, Sterken MG, Leung JY, et al. Non-coding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J Virol. 2012;86(24):13486–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hussain M, Torres S, Schnettler E, et al. West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res. 2012;40(5):2210–23.

    Article  CAS  PubMed  Google Scholar 

  72. Moon SL, Blackinton JG, Anderson JR, et al. XRN1 stalling in the 5′ UTR of Hepatitis C virus and Bovine Viral Diarrhea virus is associated with dysregulated host mRNA stability. PLoS Pathog. 2015;11(3), e1004708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wilusz JE. Long non-coding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta. 2015;1859(1):128–38.

    Article  PubMed  CAS  Google Scholar 

  74. Stevens JG, Wagner EK, Devi-Rao GB, et al. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987;235(4792):1056–9.

    Article  CAS  PubMed  Google Scholar 

  75. Allen SJ, Rhode-Kurnow A, Mott KR, et al. Interactions between herpesvirus entry mediator (TNFRSF14) and latency-associated transcript during herpes simplex virus 1 latency. J Virol. 2014;88(4):1961–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cliffe AR, Garber DA, Knipe DM. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol. 2009;83(16):8182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schwarz TM, Kulesza CA. Stability determinants of murine cytomegalovirus long non-coding RNA7.2. J Virol. 2014;88(19):11630–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics. 2013;14:543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Moss WN, Lee N, Pimienta G, Steitz JA. RNA families in Epstein-Barr virus. RNA Biol. 2014;11(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  80. Hutzinger R, Feederle R, Mrazek J, et al. Expression and processing of a small nucleolar RNA from the Epstein-Barr virus genome. PLoS Pathog. 2009;5(8), e1000547.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zeng Z, Huang H, Huang L, et al. Regulation network and expression profiles of Epstein-Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. Sci China Life Sci. 2014;57(3):315–26.

    Article  CAS  PubMed  Google Scholar 

  82. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  83. Xie Y-J, Long Z-F, He X-S. Involvement of EBV-encoded BART-miRNAs and dysregulated cellular miRNAs in nasopharyngeal carcinoma genesis. Asian Pac J Cancer Prev. 2013;14(10):5637–44.

    Article  PubMed  Google Scholar 

  84. Lo AK, Dawson CW, Jin DY, Lo KW. The pathological roles of BART miRNAs in nasopharyngeal carcinoma. J Pathol. 2012;227(4):392–403.

    Article  CAS  PubMed  Google Scholar 

  85. Marquitz AR, Raab-Traub N. The role of miRNAs and EBV BARTs in NPC. Semin Cancer Biol. 2012;22(2):166–72.

    Article  CAS  PubMed  Google Scholar 

  86. Witkos TM, Koscianska E, Krzyzosiak WJ. Practical aspects of microRNA target prediction. Curr Mol Med. 2011;11(2):93–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuzembayeva M, Hayes M, Sugden B. Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Curr Opin Virol. 2014;7:61–5.

    Article  PubMed  Google Scholar 

  88. Wong AM, Kong KL, Tsang JW, et al. Profiling of Epstein-Barr virus-encoded microRNAs in nasopharyngeal carcinoma reveals potential biomarkers and oncomirs. Cancer. 2012;118(3):698–710.

    Article  CAS  PubMed  Google Scholar 

  89. Choy EY, Siu KL, Kok KH, et al. An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival. J Exp Med. 2008;205(11):2551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kanda T, Miyata M, Kano M, et al. Clustered microRNAs of the Epstein-Barr virus cooperatively down-regulate an epithelial cell-specific metastasis suppressor. J Virol. 2015;89(5):2684–97.

    Article  PubMed  CAS  Google Scholar 

  91. Lo AK, To KF, Lo KW, et al. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A. 2007;104(41):16164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ramakrishnan R, Donahue H, Garcia D, et al. Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PLoS ONE. 2011;6(11), e27271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hsu CY, Yi YH, Chang KP, et al. The Epstein-Barr virus-encoded microRNA MiR-BART9 promotes tumor metastasis by targeting E-cadherin in nasopharyngeal carcinoma. PLoS Pathog. 2014;10(2), e1003974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Choi H, Lee H, Kim SR, et al. Epstein-Barr virus-encoded microRNA BART15-3p promotes cell apoptosis partially by targeting BRUCE. J Virol. 2013;87(14):8135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lei T, Yuen KS, Xu R, et al. Targeting of DICE1 tumor suppressor by Epstein-Barr virus-encoded miR-BART3* microRNA in nasopharyngeal carcinoma. Int J Cancer. 2013;133(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  96. Hansen A, Henderson S, Lagos D, et al. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev. 2010;24(2):195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lei X, Bai Z, Ye F, et al. Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol. 2010;12(2):193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Samols MA, Skalsky RL, Maldonado AM, et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 2007;3(5), e65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Gottwein E, Corcoran DL, Mukherjee N, et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 2011;10(5):515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cai X, Lu S, Zhang Z, et al. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A. 2005;102(15):5570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Samols MA, Hu J, Skalsky RL, Renne R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J Virol. 2005;79(14):9301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pfeffer S, Sewer A, Lagos-Quintana M, et al. Identification of microRNAs of the herpesvirus family. Nat Methods. 2005;2(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  103. Qin Z, Jakymiw A, Findlay V, Parsons C. KSHV-encoded microRNAs: lessons for viral cancer pathogenesis and emerging concepts. Int J Cell Biol. 2012;2012:603961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lin X, Liang D, He Z, et al. MiR-K12-7-5p encoded by Kaposi’s sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS ONE. 2011;6(1), e16224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bellare P, Ganem D. Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe. 2009;6(6):570–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu F, Stedman W, Yousef M, et al. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol. 2010;84(6):2697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gottwein E, Cullen BR. A human herpesvirus microRNA inhibits p21 expression and attenuates p21-mediated cell cycle arrest. J Virol. 2010;84(10):5229–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ziegelbauer JM, Sullivan CS, Ganem D. Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat Genet. 2009;41(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  109. Liang D, Gao Y, Lin X, et al. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res. 2011;21(5):793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Umbach JL, Cullen BR. In-depth analysis of Kaposi’s sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery. J Virol. 2010;84(2):695–703.

    Article  CAS  PubMed  Google Scholar 

  111. Mesri EA, Cesarman E, Boshoff C. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer. 2010;10(10):707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jones KD, Aoki Y, Chang Y, et al. Involvement of interleukin-10 (IL-10) and viral IL-6 in the spontaneous growth of Kaposi’s sarcoma herpesvirus-associated infected primary effusion lymphoma cells. Blood. 1999;94(8):2871–9.

    CAS  PubMed  Google Scholar 

  113. Cirone M, Lucania G, Aleandri S, et al. Suppression of dendritic cell differentiation through cytokines released by Primary Effusion Lymphoma cells. Immunol Lett. 2008;120(1–2):37–41.

    Article  CAS  PubMed  Google Scholar 

  114. Qin Z, Kearney P, Plaisance K, Parsons CH. Pivotal advance: Kaposi’s sarcoma-associated herpesvirus (KSHV)-encoded microRNA specifically induce IL-6 and IL-10 secretion by macrophages and monocytes. J Leukoc Biol. 2010;87(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  115. Abend JR, Uldrick T, Ziegelbauer JM. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi’s sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol. 2010;84(23):12139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  117. Cuschieri K, Brewster DH, Graham C, et al. Influence of HPV type on prognosis in patients diagnosed with invasive cervical cancer. Int J Cancer. 2014;135(11):2721–6.

    Article  CAS  PubMed  Google Scholar 

  118. Pyeon D, Pearce SM, Lank SM, et al. Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog. 2009;5(2), e1000318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Qian K, Pietila T, Ronty M, et al. Identification and validation of human papillomavirus encoded microRNAs. PLoS ONE. 2013;8(7), e70202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seo GJ, Chen CJ, Sullivan CS. Merkel cell polyomavirus encodes a microRNA with the ability to autoregulate viral gene expression. Virology. 2009;383(2):183–7.

    Article  CAS  PubMed  Google Scholar 

  121. Lee S, Paulson KG, Murchison EP, et al. Identification and validation of a novel mature microRNA encoded by the Merkel cell polyomavirus in human Merkel cell carcinomas. J Clin Virol. 2011;52(3):272–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452(7189):896–9.

    Article  CAS  PubMed  Google Scholar 

  123. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438(7068):685–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (81172188, 91129709), the National Key Basic Research Program, and the National Key Technologies R&D Program of the Ministry of Science and Technology, China (2013CB967203, 2013BAI01B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lun-Quan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Li, Z., Fu, S., Sun, LQ. (2016). Viral Noncoding RNAs in Cancer Biology. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_14

Download citation

Publish with us

Policies and ethics