Skip to main content

Noncoding RNAs in Therapeutic Resistance of Cancer

  • Chapter
  • First Online:
The Long and Short Non-coding RNAs in Cancer Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 927))

Abstract

Despite the encouraging advances made to date in cancer therapy, the benefits to patients are frequently offset by the development of resistance to therapeutics. Given their involvement in regulating multiple aspects of gene expression and cell signaling that dictates the behaviors of malignant cells, it is not surprising that noncoding RNAs (ncRNAs) play pivotal roles in the resistance of cancers to clinically available therapeutics. Aberrant expression of these ncRNAs, attributed to inherent defects or stress-responsive variations, mediates cellular signaling that compensates for unfavorable molecular events elicited by the therapeutics, thereby preventing the pharmaceuticals from exerting their desired effects on their cellular targets; alternatively, ncRNAs may regulate cancer therapeutic sensitivity by affecting drug accessibility to neoplastic cells and in vivo drug metabolism. In addition, dysregulation of ncRNA expression in cancer stromal cells can impair the responsiveness of neoplastic cells to appropriate therapies. In this chapter, we will describe ncRNA-related mechanisms underlying cancer resistance to routine therapeutics, hopefully providing rationales for the development of drug-sensitizing strategies targeted against or based on these ncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris RE. Global epidemiology of cancer. Burlington: Jones and Bartlett Publishers; 2015.

    Google Scholar 

  2. Fabbri M. Non-coding RNAs and cancer. New York: Springer; 2014.

    Book  Google Scholar 

  3. Ramakrishnan R, Gabrilovich DI. Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol Immunother CII. 2013;62:405–10.

    Article  CAS  PubMed  Google Scholar 

  4. Schaue D, McBride WH. Opportunities and challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol. 2015;12:527–40.

    Article  PubMed  Google Scholar 

  5. Dong B, Zhu YM. Molecular-targeted therapy for cancer. Chin J Cancer. 2010;29:340–5.

    Article  PubMed  Google Scholar 

  6. Pinedo HM, Giaccone G. Chemotherapy. Lancet. 1997;349 Suppl 2:SII7–9.

    Article  PubMed  Google Scholar 

  7. Perry MC. The chemotherapy source book. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  8. Chapman JD, Nahum AE. Radiotherapy treatment planning: linear-quadratic radiobiology. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  9. Sliwkowski MX, Mellman I. Antibody therapeutics in cancer. Science. 2013;341:1192–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bachelot A, Chabbert-Buffet N, Salenave S, et al. Anti-androgen treatments. Annales D’endocrinologie. 2010;71:19–24.

    Article  CAS  PubMed  Google Scholar 

  11. Jordan VC. The science of selective estrogen receptor modulators: concept to clinical practice. Clin Cancer Res. 2006;12:5010–3.

    Article  CAS  PubMed  Google Scholar 

  12. Becker Y. Molecular immunological approaches to biotherapy of human cancers—a review, hypothesis and implications. Anticancer Res. 2006;26:1113–34.

    CAS  PubMed  Google Scholar 

  13. Young A, Rowett L, Kerr D. Cancer biotherapy: an introductory guide. Oxford/New York: Oxford University Press; 2006.

    Google Scholar 

  14. Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6:1769–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Malek E, Jagannathan S, Driscoll JJ. Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget. 2014;5:8027–38.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. Int J Cancer. 2010;126:2–10.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  18. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arcaroli JJ, Quackenbush KS, Powell RW, et al. Common PIK3CA mutants and a novel 3ʹ UTR mutation are associated with increased sensitivity to saracatinib. Clin Cancer Res. 2012;18:2704–14.

    Article  CAS  PubMed  Google Scholar 

  20. Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology. 2006;130:2113–29.

    Article  CAS  PubMed  Google Scholar 

  21. Garofalo M, Di Leva G, Romano G, et al. MiR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 down-regulation. Cancer Cell. 2009;16:498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang H, Kong W, He L, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68:425–33.

    Article  CAS  PubMed  Google Scholar 

  23. Hamano R, Miyata H, Yamasaki M, et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res. 2011;17:3029–38.

    Article  CAS  PubMed  Google Scholar 

  24. Huang X, Taeb S, Jahangiri S, et al. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 2013;73:6972–86.

    Article  CAS  PubMed  Google Scholar 

  25. Fornari F, Milazzo M, Chieco P, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70:5184–93.

    Article  CAS  PubMed  Google Scholar 

  26. Weidhaas JB, Babar I, Nallur SM, et al. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007;67:11111–6.

    Article  CAS  PubMed  Google Scholar 

  27. Deng Y, Bai H, Hu H. Rs11671784 G/A variation in miR-27a decreases chemo-sensitivity of bladder cancer by decreasing miR-27a and increasing the target RUNX-1 expression. Biochem Biophys Res Commun. 2015;458:321–7.

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Wang Y, Song Y, et al. MiR-27a regulates cisplatin resistance and metastasis by targeting RKIP in human lung adenocarcinoma cells. Mol Cancer. 2014;13:193.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sugimura K, Miyata H, Tanaka K, et al. Let-7 expression is a significant determinant of response to chemotherapy through the regulation of IL-6/STAT3 pathway in esophageal squamous cell carcinoma. Clin Cancer Res. 2012;18:5144–53.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Sun T, Hu J, et al. MiR-33a promotes glioma-initiating cell self-renewal via PKA and NOTCH pathways. J Clin Invest. 2014;124:4489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fonte E, Apollonio B, Scarfo L, et al. In vitro sensitivity of CLL cells to fludarabine may be modulated by the stimulation of Toll-like receptors. Clin Cancer Res. 2013;19:367–79.

    Article  CAS  PubMed  Google Scholar 

  32. Mok TS, Lee K, Leung L. Targeting epidermal growth factor receptor in the management of lung cancer. Semin Oncol. 2014;41:101–9.

    Article  CAS  PubMed  Google Scholar 

  33. Garofalo M, Romano G, Leva D, et al. EGFR and MET receptor tyrosine kinase-altered microRNA expression induces tumorigenesis and gefitinib resistance in lung cancers. Nat Med. 2012;18:74–82.

    CAS  Google Scholar 

  34. Rai K, Takigawa N, Ito S, et al. Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther. 2011;10:1720–7.

    Article  CAS  PubMed  Google Scholar 

  35. Ragusa M, Majorana A, Statello L, et al. Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment. Mol Cancer Ther. 2010;9:3396–409.

    Article  CAS  PubMed  Google Scholar 

  36. Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:5838–47.

    Article  CAS  Google Scholar 

  37. Bai WD, Ye XM, Zhang MY, et al. MiR-200c suppresses TGF-beta signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. Int J Cancer. 2014;135:1356–68.

    Article  CAS  PubMed  Google Scholar 

  38. Ye XM, Zhu HY, Bai WD, et al. Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer. 2014;14:134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li L, Liu Y, Guo Y, et al. Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology. 2015;61:574–84.

    Article  CAS  PubMed  Google Scholar 

  40. Walker CL, Ho SM. Developmental reprogramming of cancer susceptibility. Nat Rev Cancer. 2012;12:479–86.

    Article  CAS  PubMed  Google Scholar 

  41. Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12:445–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hwang WL, Jiang JK, Yang SH, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol. 2014;16:268–80.

    Article  CAS  PubMed  Google Scholar 

  43. Li L, Li Z, Kong X, et al. Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and beta-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology. 2014;147:485–97 e418.

    Google Scholar 

  44. Park EY, Chang E, Lee EJ, et al. Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res. 2014;74:7573–82.

    Article  CAS  PubMed  Google Scholar 

  45. Munoz JL, Rodriguez-Cruz V, Ramkissoon SH, et al. Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget. 2015;6:1190–201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ahmad N, Kumar R. Steroid hormone receptors in cancer development: a target for cancer therapeutics. Cancer Lett. 2011;300:1–9.

    Article  CAS  PubMed  Google Scholar 

  47. Jordan VC, O’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25:5815–24.

    Article  CAS  Google Scholar 

  48. Miller PC, Clarke J, Koru-Sengul T, et al. A novel MAPK-microRNA signature is predictive of hormone-therapy resistance and poor outcome in ER-positive breast cancer. Clin Cancer Res. 2015;21:373–85.

    Article  CAS  PubMed  Google Scholar 

  49. Maillot G, Lacroix-Triki M, Pierredon S, et al. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res. 2009;69:8332–40.

    Article  CAS  PubMed  Google Scholar 

  50. Rao X, Di Leva G, Li M, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30:1082–97.

    Article  CAS  PubMed  Google Scholar 

  51. Godinho M, Meijer D, Setyono-Han B, et al. Characterization of BCAR4, a novel oncogene causing endocrine resistance in human breast cancer cells. J Cell Physiol. 2011;226:1741–9.

    Article  CAS  PubMed  Google Scholar 

  52. Xue X, Yang YA, Zhang A, et al. LncRNA HOTAIR enhances ER signaling and confers tamoxifen resistance in breast cancer. Oncogene. 2015. doi:10.1038/onc.2015.340.

    Google Scholar 

  53. Muluhngwi P, Klinge CM. Roles for miRNAs in endocrine resistance in breast cancer. Endocr Relat Cancer. 2015;22:R279–300.

    Article  CAS  PubMed  Google Scholar 

  54. Ma S, Chan YP, Kwan PS, et al. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer Res. 2011;71:583–92.

    Article  CAS  PubMed  Google Scholar 

  55. Yang L, Lin C, Jin C, et al. LncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 2013;500:598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ribas J, Ni X, Haffner M, et al. MiR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res. 2009;69:7165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 2014;505:302–8.

    Article  CAS  PubMed  Google Scholar 

  58. Lwin T, Zhao X, Cheng F, et al. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas. J Clin Invest. 2013;123:4612–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jeon HM, Sohn YW, Oh SY, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 2011;71:3410–21.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L, Pickard K, Jenei V, et al. MiR-153 supports colorectal cancer progression via pleiotropic effects that enhance invasion and chemotherapeutic resistance. Cancer Res. 2013;73:6435–47.

    Article  CAS  PubMed  Google Scholar 

  61. Williams GH, Stoeber K. The cell cycle and cancer. J Pathol. 2012;226:352–64.

    Article  CAS  PubMed  Google Scholar 

  62. Pouliot LM, Chen YC, Bai J, et al. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 2012;72:5945–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salerno E, Scaglione BJ, Coffman FD, et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Mol Cancer Ther. 2009;8:2684–92.

    Article  CAS  PubMed  Google Scholar 

  64. Fornari F, Gramantieri L, Giovannini C, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2009;69:5761–7.

    Article  CAS  PubMed  Google Scholar 

  65. Mohammad RM, Muqbil I, Lowe L, et al. Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology. 2015;35(Supplement):S78–103.

    Article  PubMed  CAS  Google Scholar 

  66. Huang G, Nishimoto K, Zhou Z, et al. MiR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res. 2012;72:908–16.

    Article  CAS  PubMed  Google Scholar 

  67. Razumilava N, Bronk SF, Smoot RL, et al. MiR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology. 2012;55:465–75.

    Article  CAS  PubMed  Google Scholar 

  68. Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res. 2007;67:8994–9000.

    Article  CAS  PubMed  Google Scholar 

  69. Incoronato M, Garofalo M, Urso L, et al. MiR-212 increases tumor necrosis factor-related apoptosis-inducing ligand sensitivity in non-small cell lung cancer by targeting the antiapoptotic protein PED. Cancer Res. 2010;70:3638–46.

    Article  CAS  PubMed  Google Scholar 

  70. Weng H, Huang H, Dong B, et al. Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S. Cancer Res. 2014;74:4409–19.

    Article  CAS  PubMed  Google Scholar 

  71. Dai B, Meng J, Peyton M, et al. STAT3 mediates resistance to MEK inhibitor through microRNA miR-17. Cancer Res. 2011;71:3658–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen Y, Jacamo R, Konopleva M, et al. CXCR4 down-regulation of let-7a drives chemoresistance in acute myeloid leukemia. J Clin Invest. 2013;123:2395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lam LT, Lu X, Zhang H, et al. A microRNA screen to identify modulators of sensitivity to BCL2 inhibitor ABT-263 (navitoclax). Mol Cancer Ther. 2010;9:2943–50.

    Article  CAS  PubMed  Google Scholar 

  74. Braconi C, Valeri N, Gasparini P, et al. Hepatitis C virus proteins modulate microRNA expression and chemosensitivity in malignant hepatocytes. Clin Cancer Res. 2010;16:957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Swift LH, Golsteyn RM. Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci. 2014;15:3403–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang P, Wang L, Rodriguez-Aguayo C, et al. MiR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Galluzzi L, Morselli E, Vitale I, et al. MiR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 2010;70:1793–803.

    Article  CAS  PubMed  Google Scholar 

  79. Prensner JR, Chen W, Iyer MK, et al. PCAT-1, a long non-coding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74:1651–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Streppel MM, Pai S, Campbell NR, et al. MicroRNA 223 is up-regulated in the multistep progression of Barrett’s esophagus and modulates sensitivity to chemotherapy by targeting PARP1. Clin Cancer Res. 2013;19:4067–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Huang JW, Calses P, et al. MiR-96 down-regulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res. 2012;72:4037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Duffy MJ, Synnott NC, McGowan PM, et al. P53 as a target for the treatment of cancer. Cancer Treat Rev. 2014;40:1153–60.

    Article  CAS  PubMed  Google Scholar 

  83. Ory B, Ramsey MR, Wilson C, et al. A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest. 2011;121:809–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ma S, Tang KH, Chan YP, et al. MiR-130b Promotes CD133(+) liver tumor-initiating cell growth and self-renewal via tumor protein 53-induced nuclear protein 1. Cell Stem Cell. 2010;7:694–707.

    Article  CAS  PubMed  Google Scholar 

  85. Koster R, di Pietro A, Timmer-Bosscha H, et al. Cytoplasmic p21 expression levels determine cisplatin resistance in human testicular cancer. J Clin Invest. 2010;120:3594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Drayton RM, Dudziec E, Peter S, et al. Reduced expression of miRNA-27a modulates cisplatin resistance in bladder cancer by targeting the cystine/glutamate exchanger SLC7A11. Clin Cancer Res. 2014;20:1990–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Murray-Stewart T, Hanigan CL, Woster PM, et al. Histone deacetylase inhibition overcomes drug resistance through a miRNA-dependent mechanism. Mol Cancer Ther. 2013;12:2088–99.

    Article  CAS  PubMed  Google Scholar 

  90. Salvador MA, Wicinski J, Cabaud O, et al. The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res. 2013;19:6520–31.

    Article  CAS  PubMed  Google Scholar 

  91. Shang Y, Cai X, Fan D. Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr Cancer Drug Targets. 2013;13:915–29.

    Article  CAS  PubMed  Google Scholar 

  92. Izumchenko E, Chang X, Michailidi C, et al. The TGFbeta-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res. 2014;74:3995–4005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mirzoeva OK, Collisson EA, Schaefer PM, et al. Subtype-specific MEK-PI3 kinase feedback as a therapeutic target in pancreatic adenocarcinoma. Mol Cancer Ther. 2013;12:2213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Adam L, Zhong M, Choi W, et al. MiR-200 expression regulates epithelial-to-mesenchymal transition in bladder cancer cells and reverses resistance to epidermal growth factor receptor therapy. Clin Cancer Res. 2009;15:5060–72.

    Article  CAS  PubMed  Google Scholar 

  95. Ali S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70:3606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cochrane DR, Spoelstra NS, Howe EN, et al. MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Mol Cancer Ther. 2009;8:1055–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res. 2009;69:6704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kitamura K, Seike M, Okano T, et al. MiR-134/487b/655 cluster regulates TGF-beta-induced epithelial-mesenchymal transition and drug resistance to gefitinib by targeting MAGI2 in lung adenocarcinoma cells. Mol Cancer Ther. 2014;13:444–53.

    Article  CAS  PubMed  Google Scholar 

  99. Giles KM, Kalinowski FC, Candy PA, et al. Axl mediates acquired resistance of head and neck cancer cells to the epidermal growth factor receptor inhibitor erlotinib. Mol Cancer Ther. 2013;12:2541–58.

    Article  CAS  PubMed  Google Scholar 

  100. Bockhorn J, Dalton R, Nwachukwu C, et al. MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat Commun. 2013;4:1393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, et al. Autophagy in malignant transformation and cancer progression. The EMBO J. 2015;34:856–80.

    Article  CAS  PubMed  Google Scholar 

  102. Wang P, Zhang J, Zhang L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013;145:1133–43 e1112.

    Google Scholar 

  103. Haenisch S, Werk AN, Cascorbi I. MicroRNAs and their relevance to ABC transporters. Br J Clin Pharmacol. 2014;77:587–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu CP, Hsieh CH, Wu YS. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol Pharm. 2011;8:1996–2011.

    Article  CAS  PubMed  Google Scholar 

  105. Choi YH, Yu AM. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 2014;20:793–807.

    Article  CAS  PubMed  Google Scholar 

  106. Borel F, Han R, Visser A, et al. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs. Hepatology. 2012;55:821–32.

    Article  CAS  PubMed  Google Scholar 

  107. Jaiswal R, Gong J, Sambasivam S, et al. Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J. 2012;26:420–9.

    Article  CAS  PubMed  Google Scholar 

  108. Anreddy N, Gupta P, Kathawala RJ, et al. Tyrosine kinase inhibitors as reversal agents for ABC transporter mediated drug resistance. Molecules. 2014;19:13848–77.

    Article  PubMed  CAS  Google Scholar 

  109. Kovalchuk O, Filkowski J, Meservy J, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7:2152–9.

    Article  CAS  PubMed  Google Scholar 

  110. Doyle LA, Yang W, Rishi AK, et al. H19 gene overexpression in atypical multidrug-resistant cells associated with expression of a 95-kilodalton membrane glycoprotein. Cancer Res. 1996;56:2904–7.

    CAS  PubMed  Google Scholar 

  111. Tsang WP, Kwok TT. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells. Oncogene. 2007;26:4877–81.

    Article  CAS  PubMed  Google Scholar 

  112. To KK, Robey RW, Knutsen T, et al. Escape from hsa-miR-519c enables drug-resistant cells to maintain high expression of ABCG2. Mol Cancer Ther. 2009;8:2959–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Molina-Arcas M, Casado FJ, Pastor-Anglada M. Nucleoside transporter proteins. Curr Vasc Pharmacol. 2009;7:426–34.

    Article  CAS  PubMed  Google Scholar 

  114. Bhutia YD, Hung SW, Patel B, et al. CNT1 expression influences proliferation and chemosensitivity in drug-resistant pancreatic cancer cells. Cancer Res. 2011;71:1825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dahabreh IJ, Linardou H, Siannis F, et al. Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res. 2010;16:291–303.

    Article  CAS  PubMed  Google Scholar 

  116. Nahta R, Yu D, Hung MC, et al. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3:269–80.

    Article  CAS  PubMed  Google Scholar 

  117. Lahdaoui F, Delpu Y, Vincent A, et al. MiR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene. 2015;34:780–8.

    Article  CAS  PubMed  Google Scholar 

  118. Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70:378–87.

    Article  CAS  PubMed  Google Scholar 

  119. Gomez GG, Wykosky J, Zanca C, et al. Therapeutic resistance in cancer: microRNA regulation of EGFR signaling networks. Cancer Biol Med. 2013;10:192–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Boni V, Bitarte N, Cristobal I, et al. MiR-192/miR-215 influence 5-fluorouracil resistance through cell cycle-mediated mechanisms complementary to its post-transcriptional thymidylate synthase regulation. Mol Cancer Ther. 2010;9:2265–75.

    Article  CAS  PubMed  Google Scholar 

  121. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13:714–26.

    Article  CAS  PubMed  Google Scholar 

  122. Offer SM, Butterfield GL, Jerde CR, et al. MicroRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol Cancer Ther. 2014;13:742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Persson H, Kvist A, Vallon-Christersson J, et al. The non-coding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol. 2009;11:1268–71.

    Article  CAS  PubMed  Google Scholar 

  124. Blonska M, Agarwal NK, Vega F. Shaping of the tumor microenvironment: stromal cells and vessels. Semin Cancer Biol. 2015;34:3–13.

    Article  CAS  PubMed  Google Scholar 

  125. Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME. MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene. 2015;34:5857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tanaka K, Miyata H, Sugimura K, et al. MiR-27 is associated with chemoresistance in esophageal cancer through transformation of normal fibroblasts to cancer-associated fibroblasts. Carcinogenesis. 2015;36:894–903.

    Article  PubMed  Google Scholar 

  127. Zhao J, Cao Y, Lei Z, et al. Selective depletion of CD4 + CD25 + Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res. 2010;70:4850–8.

    Article  CAS  PubMed  Google Scholar 

  128. Kong YW, Ferland-McCollough D, Jackson TJ, et al. MicroRNAs in cancer management. Lancet Oncol. 2012;13:e249–58.

    Article  CAS  PubMed  Google Scholar 

  129. Zhu Y, Yu F, Jiao Y, et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res. 2011;17:7105–15.

    Article  CAS  PubMed  Google Scholar 

  130. Giovannetti E, Funel N, Peters GJ, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 2010;70:4528–38.

    Article  CAS  PubMed  Google Scholar 

  131. Ziliak D, Gamazon ER, Lacroix B, et al. Genetic variation that predicts platinum sensitivity reveals the role of miR-193b* in chemotherapeutic susceptibility. Mol Cancer Ther. 2012;11:2054–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shi W, Gerster K, Alajez NM, et al. MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res. 2011;71:2926–37.

    Article  CAS  PubMed  Google Scholar 

  133. Eto K, Iwatsuki M, Watanabe M, et al. The sensitivity of gastric cancer to trastuzumab is regulated by the miR-223/FBXW7 pathway. Int J Cancer. 2015;136:1537–45.

    Article  CAS  PubMed  Google Scholar 

  134. Liu Q, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem. 2010;79:295–319.

    Article  CAS  PubMed  Google Scholar 

  135. Huang KC, Rao PH, Lau CC, et al. Relationship of XIST expression and responses of ovarian cancer to chemotherapy. Mol Cancer Ther. 2002;1:769–76.

    CAS  PubMed  Google Scholar 

  136. Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104–21.

    Article  CAS  PubMed  Google Scholar 

  137. Wang Z, Li Y, Ahmad A, et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 2010;1806:258–67.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lintao Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jia, L., Yang, A. (2016). Noncoding RNAs in Therapeutic Resistance of Cancer. In: Song, E. (eds) The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, vol 927. Springer, Singapore. https://doi.org/10.1007/978-981-10-1498-7_10

Download citation

Publish with us

Policies and ethics