Skip to main content

Ultimate Numerical Bound Estimation of Chaotic Dynamical Finance Model

  • Conference paper
  • First Online:
Book cover Modern Mathematical Methods and High Performance Computing in Science and Technology

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 171))

Abstract

This paper has investigated the boundedness of a 3D chaotic Dynamical Finance Model. We have discussed two bounds of this model. First by Lagrange multiplier method and second by optimization method. It was verified by using fmincon solver. Lyapunov Exponent calculated using Wolf algorithm and presented graphically in this paper. Lyapunov dimension of Dynamic Finance Model also discussed. Numerical simulations are presented to show the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumol, W.J., Quandt, R.E.: Chaos models and their implications for forecasting. East. Econ. J. 11, 3–15 (1985)

    Google Scholar 

  2. Deepmala, Das, A.K.: On solvability for certain functional equations arising in dynamic programming, mathematics and computing, Springer Proceedings in Mathematics and Statistics, vol. 139, pp. 79–94 (2015)

    Google Scholar 

  3. Leonov, G.A.: Bound for attractors and the existence of homoclinic orbit in Lorenz system. J. Appl. Math. Mech. 65, 19–32 (2001)

    Article  Google Scholar 

  4. Li, D.M., Lu, J.A., Wu, X.Q., Chen, G.R.: Estimating the bounds for the Lorenz family of chaotic systems. Chaos Solitons Fractals 23, 529–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, D., Lu, J., C, Wu: Estimating the bounds for the Lorenz family of chaotic systems. Chaos Solitons Fractals 23, 529–534 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, D., Lu, J., Wu, X., Chen, G.: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323, 844–853 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, D., Wu, X., Lu, J.: Estimating the ultimate bound and positively invariant set for the hyper chaotic LorenzHaken system. Chaos Solitons Fractals 39, 1290–1296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liao, X.X.: On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization. Sci. China Ser. E 34, 404–419 (2004)

    Google Scholar 

  9. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  10. Lu, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ma, J.H., Chen, Y.S.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (I). Appl. Math. Mech. 22, 1240–1251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma, J.H., Chen, Y.S.: Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II). Appl. Math. Mech. 22, 1375–1382 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mishra, V.N.: Some problems on approximations of functions in banach spaces, Ph.D. Thesis, Indian Institute of Technology, Roorkee - 247667, Uttarakhand, India (2007)

    Google Scholar 

  14. Mishra, V.N., Mishra, L.N.: Trigonometric approximation of signals (functions) in \(L_p\) (\(p1\)) norm. Int. J. Contemp. Math. Sci. 7(19), 909–918 (2012)

    MATH  Google Scholar 

  15. Pathak, H.K., Deepmala: Existence and uniqueness of solutions of functional equations arising in dynamic programming. Appl. Math. Comput. 218(13), 7221–7230 (2012)

    Google Scholar 

  16. Pathak, H.K., Deepmala: Some existence theorems for solvability of certain functional equations arising in dynamic programming, Bull. Calcutta Math. Soc. 104(3), 237–244 (2012)

    Google Scholar 

  17. Pogromsky, A., Santoboni, G., Nijmeijer, H.: An ultimate bound on the trajectories of the Lorenz system and its applications. Nonlinearity 16, 1597–1605 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qin, W.X., Chen, G.: Chen G. On the boundedness of the solutions of the Chen system. J. Math. Anal. Appl. 329, 445–451 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, P., Li, D.M., Hu, Q.: Bounds of the hyper-chaotic LorenzStenflo system. Commun. Nonlinear Sci. Numer. Simul. 15, 2514–2520 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, P., Li, D., Wu, X., Lu, J., Yu, X.: Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. Int. J. Bifur. Chaos Appl. Sci. Eng. 21, 2679–2694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, P., Zhang, Y., Shaolin, T., Wan, L.: Explicit ultimate bound sets of a new hyperchaotic system and its application in estimating the Hausdorff dimension. Int. J. Nonlinear Dyn. 74, 133–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, F.C., Shu, Y.l., Yang, H.l.: Bounds for a new chaotic system and its application in chaos synchronization, Commun. Nonlinear Sci. Numer. Simul. 16(13), 1501–1508 (2011)

    Google Scholar 

  24. Zhang, F.C., Mu, C., Xiaowu, L.: On the boundness of some solutions of the Lu system. Int. J. Bifur. Chaos Appl. Sci. Eng. 22(1), 1–5 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Kumar, D., Kumar, S. (2016). Ultimate Numerical Bound Estimation of Chaotic Dynamical Finance Model. In: Singh, V., Srivastava, H., Venturino, E., Resch, M., Gupta, V. (eds) Modern Mathematical Methods and High Performance Computing in Science and Technology. Springer Proceedings in Mathematics & Statistics, vol 171. Springer, Singapore. https://doi.org/10.1007/978-981-10-1454-3_6

Download citation

Publish with us

Policies and ethics