Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 171))

  • 805 Accesses

Abstract

In this study an explicit finite difference scheme is developed to solve the Maxwell’s equations in time domain for a lossless medium. From the physical point of view, the hyperbolic system of Maxwell equations shall be discretized explicitly. From the computational point of view, this developed three-dimensional explicit scheme can be more effectively implemented in parallel in CPU/GPU with the Nvidia K-20 card. From the mathematical point of view, symplectic scheme is adopted for the approximation of temporal derivative terms so that all Hamiltonians in Maxwell’s equations can be conserved at all times. Moreover, to predict the long-time accurate solution a phase velocity preserving scheme is developed for the spatial derivative terms so that the chosen time increment and grid spacing can be excellently paired following the employed theoretical guideline. Computational performance will be assessed based on the results obtained from the computed results in one GPU card and in one I7-4820K CPU card.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chi, J., Liu, F., Weber, E., Li, Y., Crozier, S.: GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI. IEEE Trans. Biomed. Eng. 58(6), 1789–96 (2011)

    Article  Google Scholar 

  2. Zunoubi, M.R., Payne, J., Roach, W.P.: CUDA implementation of TE-FDTD solution of Maxwell’s equations in dispersive media. IEEE Antennas and Propagation Society 9, 756–759 (2010)

    Google Scholar 

  3. Lee, K.H., Ahmed, I., Goh, R.S.M., Khoo, E.H., Li, E.P., Hung, T.G.G.: Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications. Progr. Electromagn. Res. 116, 441–456 (2011)

    Article  Google Scholar 

  4. Zygiridis, T.T.: High-order error-optimized FDTD algorithm with GPU implementation. IEEE Trans. Magnetics 49(5), 1809–1813 (2013)

    Article  Google Scholar 

  5. Micikevicius, P.: 3D Finite Difference Computation on GPUs Using CUDA. ACM New York 79–84, (2009)

    Google Scholar 

  6. Zhang, B., Xue, Z.H., Ren, W., Li, W.M.: X, pp. 410–413. Q. Sheng, Accelerating FDTD algorithm using GPU computing, IEEE (ICMTCE) (2011)

    Google Scholar 

  7. Bridges, T.J., Reich, S.: Multi-symplectic integration numerical scheme for Hamiltonian PDEs that conserves symplecticity. Phys. Lett. A 284, 184–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anderson, N., Arthurs, A.M.: Helicity and variational principles for Maxwell’s equations. Int. J. Electron. 54, 861–864 (1983)

    Article  Google Scholar 

  10. Marsden, J.E., Weinstein, A.: The Hamiltonian structure of Maxwell-Vlasov equations. PhysicalD 4, 394–406 (1982)

    MathSciNet  MATH  Google Scholar 

  11. Sheu, T.W.H., Hung, Y.W., Tsai, M.H., Li, J.H.: On the development of a triple-preserving Maxwell’s equations solver in non-staggered grids. Int. J. Numer. Methods Fluids. 63, 1328–1346 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Sanz-Serna, J.M.: Symplectic Runge-Kutta and related methods: recent results. Physica D 293–302, (1992)

    Google Scholar 

  13. Jiang, L.L., Mao, J.F., Wu, X.L.: Symplectic finite-difference time-domain method for Maxwell equations. IEEE Trans. Magn. 42(8), 1991–1995 (2006)

    Article  Google Scholar 

  14. Sha, W., Huang, Z.X., Chen, M.S., Wu, X.L.: Survey on symplectic finite-difference time-domain schemes for Maxwell’s equations. IEEE T. Antenn. Propag. 56, 493–510 (2008)

    Article  MathSciNet  Google Scholar 

  15. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 17, 328–346 (1996)

    Google Scholar 

  16. Zingy, D.W., Lomax, H., Jurgens, H.: High-accuracy finite-difference schemes for linear wave propagation. SIAM J. Sci. Comput. 17, 328–346 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spachmann, H., Schuhmann, R., Weiland, T.: High order spatial operators for the finite integration theory. ACES Journal 17(1), 11–22 (2002)

    MATH  Google Scholar 

  18. Kashiwa, T., Sendo, Y., Taguchi, K., Ohtani, T., Kanai, Y.: Phase velocity errors of the nonstandard FDTD method and comparison with other high-accuracy FDTD methods. IEEE Transactions on Magnetics 39(4), 2125–2128 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology (MOST) of the Republic of China under the Grants NSC96-2221-E-002-293-MY2, NSC96-2221-E-002-004, and CQSE97R0066-69.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony W. H. Sheu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this paper

Cite this paper

Sheu, T.W.H. (2016). GPU-Accelerated Simulation of Maxwell’s Equations. In: Singh, V., Srivastava, H., Venturino, E., Resch, M., Gupta, V. (eds) Modern Mathematical Methods and High Performance Computing in Science and Technology. Springer Proceedings in Mathematics & Statistics, vol 171. Springer, Singapore. https://doi.org/10.1007/978-981-10-1454-3_22

Download citation

Publish with us

Policies and ethics