Skip to main content

Classical Neuroimaging Biomarkers of Vascular Cognitive Impairment

  • Chapter
  • First Online:
Stroke Revisited: Vascular Cognitive Impairment

Part of the book series: Stroke Revisited ((STROREV))

  • 607 Accesses

Abstract

Neuroimaging is critical in the diagnosis of vascular cognitive impairment (VCI), due to the visualization of ischemic or hemorrhagic injury in the brain. For large vessel diseases, neuroimaging plays a supporting role by identifying the type (hemorrhagic vs. nonhemorrhagic) and localizing the site of the blocked vessel and the affected brain parenchyma. Magnetic resonance imaging (MRI) with magnetic resonance angiography (MRA) is a very sensitive tool in confirming the size and location of the symptomatic as well as asymptomatic strokes. For the small vessel diseases (SVD), neuroimaging plays an important role in diagnosing SVD since clinical course in SVD is slowly progressive without stepwise decline. Neuroimaging can be used to detect changes in the brain even before the symptoms are clinically evident in patients with VCI. MRI becomes the key neuroimaging modality and is preferred over computed tomography for research and clinical use owing to its high sensitivity. Characteristic features related to SVD detected by MRI include recent small subcortical infarcts, lacunes, white matter hyperintensities (WMH), perivascular spaces (PVS), and cerebral microbleeds (CMB). For example, T2-weighted images show old infarcts, fluid-attenuated inversion recovery (FLAIR) images reveal white matter changes and lacunar infarcts, and T2∗-weighted or susceptibility-weighted images reveal CMB. This chapter describes classical neuroimaging markers for VCI as detected by MRI, their relationships with cognition, and introduces recommended standard neuroimaging protocols for VCI (Standards for Reporting Vascular changes on Neuroimaging, STRIVE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowler J, Hachinski V. Vascular cognitive impairment: a new approach to vascular dementia. Baillieres Clin Neurol. 1995;4(2):357–76.

    CAS  PubMed  Google Scholar 

  2. Banerjee G, Wilson D, Jäger HR, et al. Novel imaging techniques in cerebral small vessel diseases and vascular cognitive impairment. Biochim Biophys Acta. 2016;1862(5):926–38.

    Article  CAS  PubMed  Google Scholar 

  3. Jeong JH, Kim EJ, Seo SW, et al. Cognitive and behavioral abnormalities of vascular cognitive impairment. In: Miller BL, Boeve BF, editors. The behavioral neurology of dementia. Cambridge: Cambridge University Press; 2016. p. 301–30.

    Google Scholar 

  4. Heiss WD, Rosenberg GA, Thiel A, et al. Neuroimaging in vascular cognitive impairment: a state-of-the-art review. BMC Med. 2016;14(1):174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. McKay E, Counts SE. Multi-infarct dementia: a historical perspective. Dement Geriatr Cogn Dis Extra. 2017;7(1):160–71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vitali P, Migliaccio R, Agosta F, et al. Neuroimaging in dementia. Semin Neurol. 2008;28(4):467–83.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brainin M, Tuomilehto J, Heiss WD, et al. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015;22(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  8. Kanekar S, Poot JD. Neuroimaging of vascular dementia. Radiol Clin N Am. 2014;52(2):383–401.

    Article  PubMed  Google Scholar 

  9. Roman GC, Tatemichi TK, Erkinjuntti T, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology. 1993;43(2):250–60.

    Article  CAS  PubMed  Google Scholar 

  10. Eizaguirre N, Rementeria G, González-Torres M, et al. Updates in vascular dementia. Heart Mind. 2017;1(1):22–35.

    Google Scholar 

  11. De Reuck J, Sieben G, De Coster W, et al. Stroke pattern and topography of cerebral infarcts. Eur Neurol. 1981;20(5):411–5.

    Article  PubMed  Google Scholar 

  12. Erkinjuntti T. Types of multi-infarct dementia. Acta Neurol Scand. 1987;75(6):391–9.

    Article  CAS  PubMed  Google Scholar 

  13. Erkinjuntti T, Sawada T, Whitehouse PJ. The Osaka conference on vascular dementia 1998. Alzheimer Dis Assoc Disord. 1999;13:S1–3.

    PubMed  Google Scholar 

  14. Guermazi A, Miaux Y, Rovira-Cañellas A, et al. Neuroradiological findings in vascular dementia. Neuroradiology. 2007;49(1):1–22.

    Article  PubMed  Google Scholar 

  15. Momjian-Mayor I, Baron JC. The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke. 2005;36(3):567–77.

    Article  PubMed  Google Scholar 

  16. Mangla R, Kolar B, Almast J, et al. Border zone infarcts: pathophysiologic and imaging characteristics. Radiographics. 2011;31(5):1201–14.

    Article  PubMed  Google Scholar 

  17. Ferro JM. Hyperacute cognitive stroke syndromes. J Neurol. 2001;248(10):841–9.

    Article  CAS  PubMed  Google Scholar 

  18. Pullicino PM, Caplan LR, Hommel M, et al. Cerebral small artery disease: Advances in neurology, vol. 62. New York: Raven Press; 1993.

    Google Scholar 

  19. Crystal HA, Dickson DW, Sliwinski MJ, et al. Pathological markers associated with normal aging and dementia in the elderly. Ann Neurol. 1993;34(4):566–73.

    Article  CAS  PubMed  Google Scholar 

  20. Fotuhi M, Do D, Jack C. Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol. 2012;8(4):189–202.

    Article  CAS  PubMed  Google Scholar 

  21. Fujioka M, Nishio K, Miyamoto S, et al. Hippocampal damage in the human brain after cardiac arrest. Cerebrovasc Dis. 2000;10(1):2–7.

    Article  CAS  PubMed  Google Scholar 

  22. Horstmann A, Frisch S, Jentzsch RT, et al. Resuscitating the heart but losing the brain: brain atrophy in the aftermath of cardiac arrest. Neurology. 2010;74(4):306–12.

    Article  CAS  PubMed  Google Scholar 

  23. Lass P, Buscombe JR, Harber M, et al. Cognitive impairment in patients with renal failure is associated with multiple-infarct dementia. Clin Nucl Med. 1999;24(8):561–5.

    Article  CAS  PubMed  Google Scholar 

  24. Zuccala G, Onder G, Pedone C, et al. Hypotension and cognitive impairment: selective association in patients with heart failure. Neurology. 2001;57(11):1986–92.

    Article  CAS  PubMed  Google Scholar 

  25. Antonelli Incalzi R, Marra C, Giordano A, et al. Cognitive impairment in chronic obstructive pulmonary disease—a neuropsychological and spect study. J Neurol. 2003;250(3):325–32.

    Article  PubMed  Google Scholar 

  26. Alosco ML, Gunstad J, Jerskey BA, et al. The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease. Brain Behav. 2013;3(6):626–36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alosco ML, Spitznagel MB, Cohen R, et al. Reduced cerebral perfusion predicts greater depressive symptoms and cognitive dysfunction at a 1-year follow-up in patients with heart failure. Int J Geriatr Psychiatry. 2013;29(4):428–36.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12(5):483–97.

    Article  PubMed  Google Scholar 

  29. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.

    Article  PubMed  Google Scholar 

  30. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822–38.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Doubal FN, Dennis MS, Wardlaw JM. Characteristics of patients with minor ischaemic strokes and negative MRI: a cross-sectional study. J Neurol Neurosurg Psychiatry. 2011;82(5):540–2.

    Article  PubMed  Google Scholar 

  32. Moreau F, Patel S, Lauzon ML, et al. Cavitation after acute symptomatic lacunar stroke depends on time, location, and MRI sequence. Stroke. 2012;43(7):1837–42.

    Article  PubMed  Google Scholar 

  33. Prins ND, Scheltens P, et al. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157–65.

    Article  PubMed  Google Scholar 

  34. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28(3):652–9.

    Article  CAS  PubMed  Google Scholar 

  35. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82(2):126–35.

    Article  PubMed  Google Scholar 

  37. Au R, Massaro JM, Wolf PA, et al. Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham Heart Study. Arch Neurol. 2006;63(2):246–50.

    Article  PubMed  Google Scholar 

  38. de Laat KF, Tuladhar AM, van Norden AG, et al. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain. 2011;134(Pt 1):73–83.

    Article  PubMed  Google Scholar 

  39. Poggesi A, Pracucci G, Chabriat H, et al. Urinary complaints in nondisabled elderly people with age-related white matter changes: the Leukoaraiosis And DISability (LADIS) Study. J Am Geriatr Soc. 2008;56(9):1638–43.

    Article  PubMed  Google Scholar 

  40. Boone KB, Miller BL, Lesser IM, et al. Neuropsychological correlates of white-matter lesions in healthy elderly subjects: a threshold effect. Arch Neurol. 1992;49(5):549–54.

    Article  CAS  PubMed  Google Scholar 

  41. van Straaten EC, Scheltens P, Knol DL, et al. Operational definitions for the NINDS-AIREN criteria for vascular dementia. Stroke. 2003;34(8):1907–12.

    Article  PubMed  Google Scholar 

  42. Price CC, Mitchell SM, Brumback B, et al. MRI-leukoaraiosis thresholds and the phenotypic expression of dementia. Neurology. 2012;79(8):734–40.

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Groot JC, de Leeuw FE, Oudkerk M, et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann Neurol. 2000;47(2):145–51.

    Article  PubMed  Google Scholar 

  44. Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral white matter lesions and the risk of dementia. Arch Neurol. 2004;61(10):1531–4.

    Article  PubMed  Google Scholar 

  45. Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351–6.

    Article  CAS  PubMed  Google Scholar 

  46. Reed BR, Eberling JL, Mungas D. Effects of white matter lesions and lacunes on cortical function. Arch Neurol. 2004;61(10):1545–50.

    Article  PubMed  Google Scholar 

  47. Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain. 2005;128(Pt 9):2034–41.

    Article  PubMed  Google Scholar 

  48. Jokinen H, Gouw AA, Madureira S, et al. Incident lacunes influence cognitive decline: the LADIS study. Neurology. 2011;76(22):1872–8.

    Article  CAS  PubMed  Google Scholar 

  49. Bokura H, Kobayashi S, Yamaguchi S. Distinguishing silent lacunar infarction from enlarged Virchow-Robin spaces: a magnetic resonance imaging and pathological study. J Neurol. 1998;245(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  50. Ramirez J, Berezuk C, McNeely AA, et al. Imaging the perivascular space as a potential biomarker of neurovascular and neurodegenerative diseases. Cell Mol Neurobiol. 2016;36(2):289–99.

    Article  CAS  PubMed  Google Scholar 

  51. Doubal FN, MacLullich AM, Ferguson KJ, et al. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke. 2010;41(3):450–4.

    Article  PubMed  Google Scholar 

  52. Potter GM, Doubal FN, Jackson CA, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke. 2015;10(3):376–81.

    Article  PubMed  Google Scholar 

  53. Zhu YC, Tzourio C, Soumare A, et al. Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke. 2010;41(11):2483–90.

    Article  PubMed  Google Scholar 

  54. Zhu Y-C, Dufouil C, Soumaré A, et al. High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. J Alzheimers Dis. 2010;22(2):663–72.

    Article  PubMed  Google Scholar 

  55. Maclullich AM, Wardlaw JM, Ferguson KJ, et al. Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry. 2004;75(11):1519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huijts M, Duits A, Staals J, et al. Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease. Curr Neurovasc Res. 2014;11(2):136–41.

    Article  PubMed  Google Scholar 

  57. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8(2):165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Seo SW, Lee BH, Kim E-J, et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke. 2007;38(6):1949–51.

    Article  PubMed  Google Scholar 

  59. van Es A, van der Grond J, de Craen A, et al. Cerebral microbleeds and cognitive functioning in the PROSPER study. Neurology. 2011;77(15):1446–52.

    Article  PubMed  Google Scholar 

  60. Wahlund L-O, Bronge L, Savitcheva I, et al. Neuroimaging in vascular cognitive impairment: structural and functional imaging in vascular dementia. In: Filippi M, editor. Oxford textbook of neuroimaging. Oxford: Oxford University Press; 2015. p. 200–7.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, G.H., Hwang, J., Jeong, J.H. (2020). Classical Neuroimaging Biomarkers of Vascular Cognitive Impairment. In: Lee, SH., Lim, JS. (eds) Stroke Revisited: Vascular Cognitive Impairment. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-10-1433-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1433-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1432-1

  • Online ISBN: 978-981-10-1433-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics