Skip to main content

Pathophysiology of Subarachnoid Hemorrhage

  • Chapter
  • First Online:
Stroke Revisited: Hemorrhagic Stroke

Part of the book series: Stroke Revisited ((STROREV))

  • 2016 Accesses

Abstract

Spontaneous subarachnoid hemorrhage (SAH) is an important cause of stroke. It is associated with high mortality and morbidity. SAH has differing hemorrhagic patterns, clinical course, prognosis, and therapeutic method, depending on the cause of the bleeding. The most common etiology of SAH is a rupture of an aneurysm arising at the intracranial artery. This chapter describes the underlying pathogenesis of aneurysmal formation, growth, and rupture. Not only the initial hemorrhage but also the ways in which pathophysiological processes following aneurysmal SAH may influence the complicated clinical course of survivors. Furthermore, the chapter discusses updated pathophysiology of post-hemorrhagic phenomena, including aneurysmal rebleeding, hydrocephalus, early brain injury, delayed cerebral ischemia, and medical complications. Finally, non-aneurysmal SAH is rare but is associated with diverse etiologies; the chapter summarizes proposed mechanisms of bleeding and clinical characteristics of non-aneurysmal SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreasen TH, Bartek J Jr, Andresen M, et al. Modifiable risk factors for aneurysmal subarachnoid hemorrhage. Stroke. 2013;44:3607–12.

    Article  PubMed  Google Scholar 

  2. Sehba FA, Hou J, Pluta RM, et al. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97:14–37.

    Article  PubMed  PubMed Central  Google Scholar 

  3. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid hemorrhage. Lancet. 2007;369:306–18.

    Article  PubMed  Google Scholar 

  4. van Lieshout JH, Dibué-Adjei M, Cornelius JF et al (2017) An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurg Rev: https://doi.org/10.1007/s10143-017-0827-y. [Epub ahead of print].

  5. Boogaarts HD, van Lieshout JH, van Amerongen MJ, et al. Aneurysm diameter as a risk factor for pretreatment rebleeding: a meta-analysis. J Neurosurg. 2015;122:921–8.

    Article  PubMed  Google Scholar 

  6. Can A, Du R. Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery. 2016;78:510–20.

    Article  PubMed  Google Scholar 

  7. Kassam AB, Horowitz M, Chang YF, et al. Altered arterial homeostasis and cerebral aneurysms: a molecular epidemiology study. Neurosurgery. 2004;54:1450–60.

    Article  PubMed  Google Scholar 

  8. Meng H, Wang Z, Hoi Y, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 2007;38:1924–31.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Skirgaudas M, Awad IA, Kim J, et al. Expression of angiogenesis factors and selected vascular wall matrix proteins in intracranial saccular aneurysms. Neurosurgery. 1996;39:537–47.

    PubMed  CAS  Google Scholar 

  10. Xiang J, Tutino VM, Snyder KV, et al. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. Am J Neuroradiol. 2014;35:1849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiebers DO, Whisnant JP, Huston J III, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.

    Article  PubMed  Google Scholar 

  12. Nahed BV, Bydon M, Ozturk AK, et al. Genetics of intracranial aneurysms. Neurosurgery. 2007;60:213–25.

    Article  PubMed  Google Scholar 

  13. Peters DG, Kassam A, St. Jean PL, et al. Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke. 1999;30:2612–6.

    Article  CAS  PubMed  Google Scholar 

  14. Hussain I, Duffis EJ, Gandhi CD, et al. Genome-wide association studies of intracranial aneurysms: an update. Stroke. 2013;44:2670–5.

    Article  PubMed  Google Scholar 

  15. Larsen CC, Astrup J. Rebleeding after aneurysmal subarachnoid hemorrhage: a literature review. World Neurosurg. 2012;79:307–12.

    Article  PubMed  Google Scholar 

  16. Bridinski W, Zhu YQ, Lanzino G, et al. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:615–20.

    Article  Google Scholar 

  17. Villablanca JP, Duckwiler GR, Jahan R, et al. Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology. 2013;269:258–65.

    Article  PubMed  Google Scholar 

  18. Beckes D, Rinkel GJ, Laban KG, et al. Patient- and aneurysm-specific risk factors for intracranial aneurysm growth. A systematic review and meta-analysis. Stroke. 2016;47:951–7.

    Article  Google Scholar 

  19. Juvela S, Poussa K, Porras M. Factors affecting formation and growth of intracranial aneurysms: a long-term follow-up study. Stroke. 2001;32:485–91.

    Article  CAS  PubMed  Google Scholar 

  20. Morita A, Kirino T, Hashi K, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. New Engl J Med. 2012;366:2474–82.

    Article  PubMed  Google Scholar 

  21. Wermer MJ, van der Schaaf IC, Algra A, et al. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke. 2007;38:1404–10.

    Article  PubMed  Google Scholar 

  22. Guo LM, Zhou HY, Xu JW, et al. Risk factors related to aneurysmal rebleeding. World Neurosurg. 2011;76:292–8.

    Article  PubMed  Google Scholar 

  23. Tanno Y, Homma M, Oinuma M, et al. Rebleeding from ruptured intracranial aneurysms in north Eastern Province of Japan. A cooperative study. J Neurol Sci. 2007;258:11–6.

    Article  PubMed  Google Scholar 

  24. Aoyagi N, Hayakawa I. Study on early re-rupture of intracranial aneurysms. Acta Neurochir. 1996;138:12–8.

    Article  CAS  PubMed  Google Scholar 

  25. van Asch CJ, van der Schaaf IC, Rinkel GJ. Acute hydrocephalus and cerebral perfusion after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2010;31:67–70.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen S, Luo J, Reis C, et al. Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int. 2017;2017:8584753.

    PubMed  PubMed Central  Google Scholar 

  27. Wilson CD, Safavi-Abbasi S, Sun H, et al. Meta-analysis and systematic review of risk factors for shunt dependency after aneurysmal subarachnoid hemorrhage. J Neurosurg. 2017;126:586–95.

    Article  PubMed  Google Scholar 

  28. Yolas C, Ozdemir NG, Kanat A, et al. Uncovering a new cause of obstructive hydrocephalus following subarachnoid hemorrhage: choroidal artery vasospasm-related ependymal cell degeneration and aqueductal stenosis-first experimental study. World Neurosurg. 2016;90:484–91.

    Article  PubMed  Google Scholar 

  29. Foreman B. The pathophysiology of delayed cerebral ischemia. J Clin Neurophysiol. 2016;33:174–82.

    Article  PubMed  Google Scholar 

  30. Kanat A, Turkmenoglu O, Aydin MD, et al. Toward changing of the pathophysiologic basis of acute hydrocephalus after subarachnoid hemorrhage: a preliminary experimental study. World Neurosurg. 2013;34:390–5.

    Article  Google Scholar 

  31. Vergouwen MD, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.

    Article  PubMed  Google Scholar 

  32. Zheng VZ, Wong GK. Neuroinflammation responses after subarachnoid hemorrhage: a review. J Clin Neurosci. 2017;42:7–11.

    Article  PubMed  Google Scholar 

  33. Ecker A, Riemenschneider PA. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg. 1951;8:660–7.

    Article  CAS  PubMed  Google Scholar 

  34. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9.

    Article  CAS  PubMed  Google Scholar 

  35. Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care. 2008;8:404–12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dreier JP, Woitzik J, Fabricius M, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006;129:3224–37.

    Article  PubMed  Google Scholar 

  37. Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain. 2009;132:1866–81.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Friedman JA, Pichelmann MA, Piepgras DG, et al. Pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurosurgery. 2003;52:1025–31.

    PubMed  Google Scholar 

  39. Kerro A, Woods T, Chang JJ. Neurogenic stunned myocardium in subarachnoid hemorrhage. J Crit Care. 2017;38:27–34.

    Article  PubMed  Google Scholar 

  40. Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke. 2001;32:1989–93.

    Article  CAS  PubMed  Google Scholar 

  41. Kapadia A, Schweizer TA, Spears J, et al. Nonaneurysmal perimesencephalic subarachnoid hemorrhage: diagnosis, pathophysiology, clinical characteristics, and long-term outcome. World Neurosurg. 2014;82:1131–43.

    Article  PubMed  Google Scholar 

  42. Rouchaud A, Lehman VT, Murad MH, et al. Nonaneurysmal perimesencephalic hemorrhage is associated with deep cerebral venous drainage anomalies: a systematic literature review and meta-analysis. AJNR Am J Neuroradiol. 2016;37:1657–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hui F, Tumialán L, Tanaka T, et al. Clinical differences between angiographically negative, diffuse subarachnoid hemorrhage and perimesencephalic subarachnoid hemorrhage. Neurocrit Care. 2009;11:64–70.

    Article  PubMed  Google Scholar 

  44. Kumar S, Goddeau RP Jr, Selim MH, et al. Atraumatic convexal subarachnoid hemorrhage: clinical presentation, imaging patterns, and etiologies. Neurology. 2010;74:893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Naidech AM, Rosenberg NF, Maas MB, et al. Predictors of hemorrhage volume and disability after perimesencephalic subarachnoid hemorrhage. Neurology. 2012;78:811–5.

    Article  CAS  PubMed  Google Scholar 

  46. Beitzke M, Gattringer T, Enzinger C, et al. Clinical presentation, etiology, and long-term prognosis in patients with nontraumatic convexal subarachnoid hemorrhage. Stroke. 2011;42:3055–60.

    Article  PubMed  Google Scholar 

  47. Boukobza M, Crassard I, Bousser MG, et al. Radiological findings in cerebral venous thrombosis presenting as subarachnoid hemorrhage: a series of 22 cases. Neuroradiology. 2016;58:11–6.

    Article  PubMed  Google Scholar 

  48. Ducros A, Boukobza M, Porcher R, et al. The clinical and radiological spectrum of reversible cerebral vasoconstriction syndrome. A prospective series of 67 patients. Brain. 2007;130:3091–101.

    Article  PubMed  Google Scholar 

  49. Matsumaru Y, Yanaka K, Muroi A, et al. Significance of a small bulge on the basilar artery in patients with perimesencephalic nonaneurysmal subarachnoid hemorrhage: report of two cases. J Neurosurg. 2003;98:426–9.

    Article  PubMed  Google Scholar 

  50. Park SQ, Bae HG, Yoon SM, et al. Morphological characteristics of the Thalamoperforating arteries. J Korean Neurosurg Soc. 2010;47:36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Takeda S, Yamazaki K, Miyakawa T, et al. Cerebral amyloid angiopathy initially occurs in the meningeal vessels. Neuropathology. 2017;37:502–8.

    Article  CAS  PubMed  Google Scholar 

  52. Etminan N, Dreier R, Buchholz BA, et al. Age of collagen in intracranial saccular aneurysms. Stroke. 2014;45:1757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media Singapore

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sim, S.Y., Shin, Y.S. (2018). Pathophysiology of Subarachnoid Hemorrhage. In: Lee, SH. (eds) Stroke Revisited: Hemorrhagic Stroke. Stroke Revisited. Springer, Singapore. https://doi.org/10.1007/978-981-10-1427-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-1427-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-1426-0

  • Online ISBN: 978-981-10-1427-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics