Advertisement

Pathophysiology of Primary Intracerebral Hemorrhage: Insights into Cerebral Small Vessel Disease

  • Marco Pasi
  • Anand ViswanathanEmail author
Chapter
  • 1.2k Downloads
Part of the Stroke Revisited book series (STROREV)

Abstract

Spontaneous intracerebral, non-traumatic intracerebral hemorrhage (ICH) results from arterial bleeding and formation of a brain hematoma. While 20% of all ICH cases result from a defined underlying cause (e.g., vascular malformation, coagulopathy, and tumors), the majority of ICHs are related to the rupture of damaged small- and medium-sized arteries of the brain. Pathologies affecting these arteries fall under the broad term cerebral small vessel disease. The two major forms of cerebral small vessel disease that are common in elderly populations are hypertensive small vessel disease (mainly affecting deep perforating arteries supplying the subcortical gray and white matter) and cerebral amyloid angiopathy (CAA) (characterized by the progressive accumulation of β-amyloid in the leptomeningeal and cortical vessels). Pathologic studies suggest that hypertensive small vessel disease can lead to ICH in deep gray nuclei and white matter, thalamus, and pons, while CAA is responsible for a large majority of ICH in lobar areas. In the first part of the chapter, we will discuss the pathophysiology of ICH in relation to these two subtypes of small vessel disease. In the second part, the dynamic processes related to hematoma evolution and mechanisms of primary and secondary brain injury will be explored.

References

  1. 1.
    Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30:536–50.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Fisher CM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol. 2003;62:104–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Qureshi AI, Tuhrim S, Broderick JP, et al. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Foulkes MA, Wolf PA, Price TR, et al. The stroke data bank: design, methods, and baseline characteristics. Stroke. 1988;19:547–54.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mohr JP, Caplan LR, Melski JW, et al. The Harvard cooperative stroke registry: a prospective registry. Neurology. 1978;28:754–62.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Béjot Y, Cordonnier C, el al DJ. Intracerebral haemorrhage profiles are changing: results from the Dijon population-based study. Brain. 2013;136:658–64.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Okazaki H, Reagan TJ, Campbell RJ. Clinicopathologic studies of primary cerebral amyloid angiopathy. Mayo Clin Proc. 1979;54:22–31.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Greenberg SM. Small Vessels, big problems. N Engl J Med. 2006;354:1451–3.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12:483–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Charidimou A, Boulouis G, Gurol ME, et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. 2017;140:1829–50.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bouvy WH, Geurts LJ, Kuijf HJ, et al. Assessment of blood flow velocity and pulsatility in cerebral perforating arteries with 7-T quantitative flow MRI. NMR Biomed. 2016;29:1295–304.PubMedCrossRefGoogle Scholar
  13. 13.
    van Veluw SJ, Zwanenburg JJM, Hendrikse J, et al. High resolution imaging of cerebral small vessel disease with 7 T MRI. Acta Neurochir Suppl. 2014;119:125–30.PubMedGoogle Scholar
  14. 14.
    Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Knudsen KA, Rosand J, Karluk D, et al. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology. 2001;56:537–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011;70:871–80.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dinsdale HB. Spontaneous hemorrhage in the posterior fossa: a study of primary cerebellar and pontine hemorrhages with observations on their pathogenesis. Arch Neurol. 1964;10:200–17.PubMedCrossRefGoogle Scholar
  18. 18.
    Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke. 1983;14:28–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Russell RWR. Observations on intracerebral aneurysms. Brain. 1963;86:425–42.CrossRefGoogle Scholar
  20. 20.
    Vonsattel JPG, Myers RH, Tessa Hedley-Whyte E, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30:637–49.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    McCarron MO, Nicoll JA, Stewart J, et al. The apolipoprotein E epsilon2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage. J Neuropathol Exp Neurol. 1999;58:711–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Gilbert JJ, Vinters HV. Cerebral amyloid angiopathy: incidence and complications in the aging brain. I. Cerebral hemorrhage. Stroke. 1983;14:915–23.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke. 1983;14:924–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke. 1986;17:1078–83.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Woo D, Sauerbeck LR, Kissela BM, et al. Genetic and environmental risk factors for intracerebral hemorrhage: preliminary results of a population-based study. Stroke. 2002;33:1190–6.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Viswanathan A, Rakich SM, Engel C, et al. Antiplatelet use after intracerebral hemorrhage. Neurology. 2006;66:206–9.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jackson CA, Sudlow CLM. Is hypertension a more frequent risk factor for deep than for lobar supratentorial intracerebral haemorrhage? J Neurol Neurosurg Psychiatry. 2006;77:1244–52.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Massaro AR, Sacco RL, Mohr JP, et al. Clinical discriminators of lobar and deep hemorrhages: the stroke data Bank. Neurology. 1991;41:1881–5.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bahemuka M. Primary intracerebral hemorrhage and heart weight: a clinicopathologic case-control review of 218 patients. Stroke. 1987;18:531–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Broderick J, Brott T, Tomsick T, et al. Lobar hemorrhage in the elderly. The undiminishing importance of hypertension. Stroke. 1993;24:49–51.PubMedCrossRefGoogle Scholar
  31. 31.
    PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358:1033–41.CrossRefGoogle Scholar
  32. 32.
    Biffi A, Anderson CD, Battey TWK, et al. Association between blood pressure control and risk of recurrent intracerebral hemorrhage. JAMA. 2015;314:904–12.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Arima H, Anderson C, Omae T, et al. Degree of blood pressure reduction and recurrent stroke: the PROGRESS trial. J Neurol Neurosurg Ps. 2014;85:1284–5.CrossRefGoogle Scholar
  34. 34.
    Arima H, Tzourio C, Anderson C, et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke. 2010;41:394–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Folsom AR, Yatsuya H, Psaty BM, et al. Carotid intima-media thickness, electrocardiographic left ventricular hypertrophy, and incidence of intracerebral hemorrhage. Stroke. 2011;42:3075–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bos MJ, Koudstaal PJ, Hofman A, et al. Decreased glomerular filtration rate is a risk factor for hemorrhagic but not for ischemic stroke: the Rotterdam study. Stroke. 2007;38:3127–32.PubMedCrossRefGoogle Scholar
  37. 37.
    Laible M, Horstmann S, Möhlenbruch M, et al. Renal dysfunction is associated with deep cerebral microbleeds but not white matter hyperintensities in patients with acute intracerebral hemorrhage. J Neurol. 2015;262:2312–22.PubMedCrossRefGoogle Scholar
  38. 38.
    Zheng D, Sato S, Arima H, et al. Estimated GFR and the effect of intensive blood pressure lowering after acute intracerebral hemorrhage. Am J Kidney Dis. 2016;68:94–102.PubMedCrossRefGoogle Scholar
  39. 39.
    O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension. 2005;46:200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ikram MA, Vernooij MW, Hofman A, et al. Kidney function is related to cerebral small vessel disease. Stroke. 2008;39:55–61.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hier DB, Davis KR, Richardson EP, et al. Hypertensive putaminal hemorrhage. Ann Neurol. 1977;1:152–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mutlu N, Berry RG, Alpers BJ. Massive cerebral hemorrhage: clinical and pathological correlations. Arch Neurol. 1963;8:644–61.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Freytag E. Fatal hypertensive intracerebral haematomas: a survey of the pathological anatomy of 393 cases. J Neurol Neurosurg Ps. 1968;31:616–20.CrossRefGoogle Scholar
  44. 44.
    Chung CS, Caplan LR, Han W, et al. Thalamic haemorrhage. Brain J Neurol. 1996;119:1873–86.CrossRefGoogle Scholar
  45. 45.
    Walshe TM, Davis KR, Fisher CM. Thalamic hemorrhage: a computed tomographic-clinical correlation. Neurology. 1977;27:217–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Caplan LR, Goodwin JA. Lateral segmental brainstem hemorrhages. Neurology. 1982;32:252–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Garcia JH, Ho KL. Pathology of hypertensive arteriopathy. Neurosurg Clin N Am. 1992;3:497–507.PubMedCrossRefGoogle Scholar
  48. 48.
    Cole FM, Yates PO. Pseudo-aneurysms in relationship to massive cerebral haemorrhage. J Neurol Neurosurg Ps. 1967;30:61–6.CrossRefGoogle Scholar
  49. 49.
    Cole FM, Yates P. Intracerebral microaneurysms and small cerebrovascular lesions. Brain. 1967;90:759–68.PubMedCrossRefGoogle Scholar
  50. 50.
    Rosenblum WI. Miliary aneurysms and “Fibrinoid” degeneration of cerebral blood vessels. Hum Pathol. 1977;8:133–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Charcot JM, Bouchard C. Nouvelles recherches sur la pathogénie de l’hémorragie cérébrale. Arch Physiol Norm Pathol. 1868;1:110.Google Scholar
  52. 52.
    Ellis AG. The pathogenesis of spontaneous cerebral hemorrhage. Proc Pathol Soc. 1909;12:197.Google Scholar
  53. 53.
    Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol. 1968;12:1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Alistair DG. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 2002;12:358–70.CrossRefGoogle Scholar
  55. 55.
    Ogata J, Fujishima M, Tamaki K, et al. Vascular changes underlying cerebral lesions in stroke-prone spontaneously hypertensive rats. A serial section study. Acta Neuropathol. 1981;54:183–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Int J Stroke. 2016;11:6–18.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Deramecourt V, Slade JY, Oakley AE, et al. Staging and natural history of cerebrovascular pathology in dementia. Neurology. 2012;78:1043–50.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lammie GA, Brannan F, Slattery J, et al. Nonhypertensive cerebral small-vessel disease: an autopsy study. Stroke. 1997;28:2222–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hara A, Tanaka K, Ohkubo T, et al. Ambulatory versus home versus clinic blood pressure: the association with subclinical cerebrovascular diseases: the Ohasama study. Hypertension. 2012;59:22–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Wong TY, Klein R, Sharrett AR, et al. Retinal arteriolar diameter and risk for hypertension. Ann Intern Med. 2004;140:248.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol. 2011;7:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Rannikmäe K, Kalaria RN, Greenberg SM, et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis. J Neurol Neurosurg Ps. 2014;85:300–5.CrossRefGoogle Scholar
  63. 63.
    Reinvang I, Espeseth T, Westlye LT. APOE-related biomarker profiles in non-pathological aging and early phases of Alzheimer’s disease. Neurosci Biobehav Rev. 2013;37:1322–35.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zhang-Nunes SX, Maat-Schieman MLC, Duinen SG, et al. The cerebral β-amyloid angiopathies: hereditary and sporadic. Brain Pathol. 2006;16:30–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Charidimou A, Blacker D, Viswanathan A. Context is everything: from cardiovascular disease to cerebral microbleeds. Int J Stroke. 2018;13:6–10.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Moulin S, Labreuche J, Bombois S, et al. Dementia risk after spontaneous intracerebral haemorrhage: a prospective cohort study. Lancet Neurol. 2016;15:820–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Xiong L, Boulouis G, Charidimou A, et al. Dementia incidence and predictors in cerebral amyloid angiopathy patients without intracerebral hemorrhage. J Cereb Blood Flow Metab. 2018;38:241–9.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rosand J, Muzikansky A, Kumar A, et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol. 2005;58:459–62.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Biffi A, Halpin A, Towfighi A, et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology. 2010;75:693–8.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Roongpiboonsopit D, Charidimou A, William CM, et al. Cortical superficial siderosis predicts early recurrent lobar hemorrhage. Neurology. 2016;87:1863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Charidimou A, Boulouis G, Roongpiboonsopit D, et al. Cortical superficial siderosis multifocality in cerebral amyloid angiopathy a prospective study. Neurology. 2017;89:2128–35.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology. 2010;74:1346–50.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Martinez-Ramirez S, Romero J-R, Shoamanesh A, et al. Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. Alzheimers Dement. 2015;11:1480–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Attems J, Jellinger K, Thal DR, et al. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2011;37:75–93.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Revesz T, Holton JL, Lashley T, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol. 2002;12:343–57.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke. 1987;18:311–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Charidimou A, Martinez-Ramirez S, Shoamanesh A, et al. Cerebral amyloid angiopathy with and without hemorrhage evidence for different disease phenotypes. Neurology. 2015;84:1206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 2011;10:241–52.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Biffi A, Anderson CD, Jagiella JM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011;10:702–9.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    O’Donnell HC, Rosand J, Knudsen KA, et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med. 2000;342:240–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Schmechel DE, Saunders AM, Strittmatter WJ, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA. 1993;90:9649–53.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Greenberg SM, Vonsattel JP, Segal AZ, et al. Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology. 1998;50:961–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Greenberg SM, William Rebeck G, Vonsattel JPG, et al. Apolipoprotein E ϵ4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol. 1995;38:254–9.PubMedCrossRefGoogle Scholar
  84. 84.
    Charidimou A, Martinez-Ramirez S, Reijmer YD, et al. Total magnetic resonance imaging burden of small vessel disease in cerebral amyloid angiopathy: an imaging-pathologic study of concept validation. JAMA Neurol. 2016;73:994–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Itoh Y, Yamada M, Hayakawa M, et al. Cerebral amyloid angiopathy: a significant cause of cerebellar as well as lobar cerebral hemorrhage in the elderly. J Neurol Sci. 1993;116:135–41.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Fisher CM, Picard EH, Polak A, et al. Acute hypertensive cerebellar hemorrhage: diagnosis and surgical treatment. J Nerv Ment Dis. 1965;140:38–57.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pasi M, Marini S, Morotti A, et al. Cerebellar hematoma location: implications for the underlying microangiopathy. Stroke. 2018;49:207–10.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Smith EE, Nandigam KRN, Chen Y-W, et al. MRI markers of small vessel disease in lobar and deep hemispheric intracerebral hemorrhage. Stroke. 2010;41:1933–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Pasi M, Charidimou A, Boulouis G et al (2018) Mixed-location cerebral hemorrhage/microbleeds: underlying microangiopathy and recurrence risk. Neurology 9;90:e119-e126.Google Scholar
  90. 90.
    Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol. 1999;20:637–42.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Kim YJ, Kim HJ, Park J-H, et al. Synergistic effects of longitudinal amyloid and vascular changes on lobar microbleeds. Neurology. 2016;87:1575–82.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Pasi M, Boulouis G, Fotiadis P, et al. Distribution of lacunes in cerebral amyloid angiopathy and hypertensive small vessel disease. Neurology. 2017;88:2162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Charidimou A, Boulouis G, Haley K, et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2016:10–1212.Google Scholar
  94. 94.
    Thanprasertsuk S, Martinez-Ramirez S, Pontes-Neto OM, et al. Posterior white matter disease distribution as a predictor of amyloid angiopathy. Neurology. 2014;83:794–800.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Charidimou A, Boulouis G, Pasi M, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017;88:1157–64.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009;8:165–74.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Greenberg SM, Nandigam RNK, Delgado P, et al. Microbleeds versus macrobleeds. Stroke. 2009;40:2382–6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    van Veluw SJ, Biessels GJ, Klijn CJM, et al. Heterogeneous histopathology of cortical microbleeds in cerebral amyloid angiopathy. Neurology. 2016;86:867–71.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    van VSJ, Kuijf HJ, Charidimou A, et al. Reduced vascular amyloid burden at microhemorrhage sites in cerebral amyloid angiopathy. Acta Neuropathol. 2017;133:409–15.CrossRefGoogle Scholar
  100. 100.
    Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain. 2007;130:1988–2003.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Vernooij MW, van der LA, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds the Rotterdam scan study. Neurology. 2008;70:1208–14.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Banerjee G, Wahab KW, Gregoire SM, et al. Impaired renal function is related to deep and mixed, but not strictly lobar cerebral microbleeds in patients with ischaemic stroke and TIA. J Neurol. 2016;263:760–4.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Charidimou A, Linn J, Vernooij MW, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138:2126–39.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Charidimou A, Boulouis G, Xiong L, et al. Cortical superficial siderosis and first-ever cerebral hemorrhage in cerebral amyloid angiopathy. Neurology. 2017;88:1607–14.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ni J, Auriel E, Jindal J, et al. The characteristics of superficial siderosis and convexity subarachnoid hemorrhage and clinical relevance in suspected cerebral amyloid angiopathy. Cerebrovasc Dis. 2015;39:278–86.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wollenweber FA, Baykara E, Zedde M, et al. Cortical superficial siderosis in different types of cerebral small vessel disease. Stroke. 2017;48:1404–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Charidimou A, Baron J-C, Werring DJ. Transient focal neurological episodes, cerebral amyloid angiopathy, and intracerebral hemorrhage risk: looking beyond TIAs. Int J Stroke. 2013;8:105–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    van VSJ, Lauer A, Charidimou A, et al. Evolution of DWI lesions in cerebral amyloid angiopathy: evidence for ischemia. Neurology. 2017;89:2136–42.CrossRefGoogle Scholar
  109. 109.
    Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc. 2015;4:e001140.PubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zhu Y-C, Chabriat H, Godin O, et al. Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. J Neurol. 2012;259:530–6.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Charidimou A, Meegahage R, Fox Z, et al. Enlarged perivascular spaces as a marker of underlying arteriopathy in intracerebral haemorrhage: a multicentre MRI cohort study. J Neurol Neurosurg Ps. 2013;84:624–9.CrossRefGoogle Scholar
  112. 112.
    Charidimou A, Hong YT, Jäger HR, et al. White matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? Stroke. 2015;46:1707–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Keable A, Fenna K, Yuen HM, et al. Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta. 2016;1862:1037–46.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Manousopoulou A, Gatherer M, Smith C, et al. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy. Neuropathol Appl Neurobiol. 2017;43:492–504.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Kimberly WT, Gilson A, Rost NS, et al. Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy. Neurology. 2009;72:1230–5.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Prabhakaran S, Gupta R, Ouyang B, et al. Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study. Stroke. 2010;41:89–94.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Gregoire SM, Charidimou A, Gadapa N, et al. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study. Brain J Neurol. 2011;134:2376–86.CrossRefGoogle Scholar
  118. 118.
    Menon RS, Burgess RE, Wing JJ, et al. Predictors of highly prevalent brain ischemia in intracerebral hemorrhage. Ann Neurol. 2012;71:199–205.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Auriel E, Gurol ME, Ayres A, et al. Characteristic distributions of intracerebral hemorrhage–associated diffusion-weighted lesions. Neurology. 2012;79:2335–41.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kidwell CS, Rosand J, Norato G, et al. Ischemic lesions, blood pressure dysregulation, and poor outcomes in intracerebral hemorrhage. Neurology. 2017;88:782–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology. 1998;50:841.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, et al. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology. 2013;80:1551–156.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Broderick JP, Brott TG, Duldner JE, et al. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.PubMedCrossRefGoogle Scholar
  124. 124.
    Felberg RA, Grotta JC, Shirzadi AL, et al. Cell death in experimental intracerebral hemorrhage: the “black hole” model of hemorrhagic damage. Ann Neurol. 2002;51:517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol. 2010;92:463–77.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Tsunoda A, Mitsuoka H, Bandai H, et al. Intracranial cerebrospinal fluid measurement studies in suspected idiopathic normal pressure hydrocephalus, secondary normal pressure hydrocephalus, and brain atrophy. J Neurol Neurosurg Ps. 2002;73:552–5.CrossRefGoogle Scholar
  127. 127.
    Castillo J, Dávalos A, Álvarez–Sabín J et al (2002) Molecular signatures of brain injury after intracerebral hemorrhage. Neurology 58:624–629.Google Scholar
  128. 128.
    Morotti A, Phuah C-L, Anderson CD, et al. Leukocyte count and intracerebral hemorrhage expansion. Stroke. 2016;47:1473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Mayne M, Fotheringham J, Yan H-J, et al. Adenosine A2A receptor activation reduces proinflammatory events and decreases cell death following intracerebral hemorrhage. Ann Neurol. 2001;49:727–35.PubMedCrossRefGoogle Scholar
  130. 130.
    Hernandez-Guillamon M, Martinez-Saez E, Delgado P, et al. MMP-2/MMP-9 plasma level and brain expression in cerebral amyloid angiopathy-associated hemorrhagic stroke. Brain Pathol. 2012;22:133–41.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Brott T, Broderick J, Kothari R, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Goldstein JN, Fazen LE, Snider R, et al. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology. 2007;68:889–94.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11:307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Boulouis G, Morotti A, Charidimou A, et al. Noncontrast computed tomography markers of intracerebral hemorrhage expansion. Stroke. 2017;48:1120–5.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Boulouis G, Morotti A, Brouwers HB, et al. Association between hypodensities detected by computed tomography and hematoma expansion in patients with intracerebral hemorrhage. JAMA Neurol. 2016;73:961–8.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Boulouis G, Morotti A, Brouwers HB, et al. Noncontrast computed tomography hypodensities predict poor outcome in intracerebral hemorrhage patients. Stroke. 2016;47:2511–6.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Boulouis G, van Etten ES, Charidimou A, et al. Association of key magnetic resonance imaging markers of cerebral small vessel disease with hematoma volume and expansion in patients with lobar and deep intracerebral hemorrhage. JAMA Neurol. 2016;73:1440.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Falcone GJ, Biffi A, Brouwers HB, et al. Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol. 2013;70:988–94.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Masada T, Hua Y, Xi G, et al. Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist. J Neurosurg. 2001;95:680–6.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Power C, Henry S, Del Bigio MR, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53:731–42.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Rynkowski MA, Kim GH, Garrett MC, et al. C3a receptor antagonist attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29:98–107.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Zhao X, Sun G, Zhang J, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor γ in microglia/macrophages. Ann Neurol. 2007;61:352–62.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Wang J, Doré S. Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain. 2007;130:1643–52.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Taylor RA, Chang C-F, Goods BA, et al. TGF-β1 modulates microglial phenotype and promotes recovery after intracerebral hemorrhage. J Clin Invest. 2017;127:280–92.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013;229:176–85.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Wagner KR, Xi G, Hua Y, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke. 1996;27:490–7.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg. 1998;89:991–6.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Abilleira S, Montaner J, Molina CA, et al. Metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg. 2003;99:65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Alvarez-Sabín J, Delgado P, Abilleira S, et al. Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke. 2004;35:1316–22.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Mehdiratta M, Kumar S, Hackney D, et al. Association between serum ferritin level and perihematoma edema volume in patients with spontaneous intracerebral hemorrhage. Stroke. 2008;39:1165–70.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 2006;26:10281–91.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.PubMedCrossRefGoogle Scholar
  154. 154.
    Zazulia AR, Diringer MN, Derdeyn CP, et al. Progression of mass effect after intracerebral hemorrhage. Stroke. 1999;30:1167–73.PubMedCrossRefGoogle Scholar
  155. 155.
    Wu J, Hua Y, Keep RF, et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke. 2003;34:2964–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Silva Y, Leira R, Tejada J, et al. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke. 2005;36:86–91.PubMedCrossRefGoogle Scholar
  157. 157.
    Castellazzi M, Tamborino C, De Santis G, et al. Timing of serum active MMP-9 and MMP-2 levels in acute and subacute phases after spontaneous intracerebral hemorrhage. Acta Neurochir Suppl. 2010;106:137–40.PubMedCrossRefGoogle Scholar
  158. 158.
    Herweh C, Jüttler E, Schellinger PD, et al. Evidence against a perihemorrhagic penumbra provided by perfusion computed tomography. Stroke. 2007;38:2941–7.PubMedCrossRefGoogle Scholar
  159. 159.
    Qureshi AI, Wilson DA, Hanley DF, et al. No evidence for an ischemic penumbra in massive experimental intracerebral hemorrhage. Neurology. 1999;52:266–72.PubMedCrossRefGoogle Scholar
  160. 160.
    Zazulia AR, Diringer MN, Videen TO, et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab. 2001;21:804–10.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Veluw V, J S, Charidimou A, et al. Microbleed and microinfarct detection in amyloid angiopathy: a high-resolution MRI-histopathology study. Brain. 2016;139:3151–62.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2018

Authors and Affiliations

  1. 1.Hemorrhagic Stroke Research Program, Department of NeurologyMassachusetts General Hospital Stroke Research Center, Harvard Medical SchoolBostonUSA

Personalised recommendations